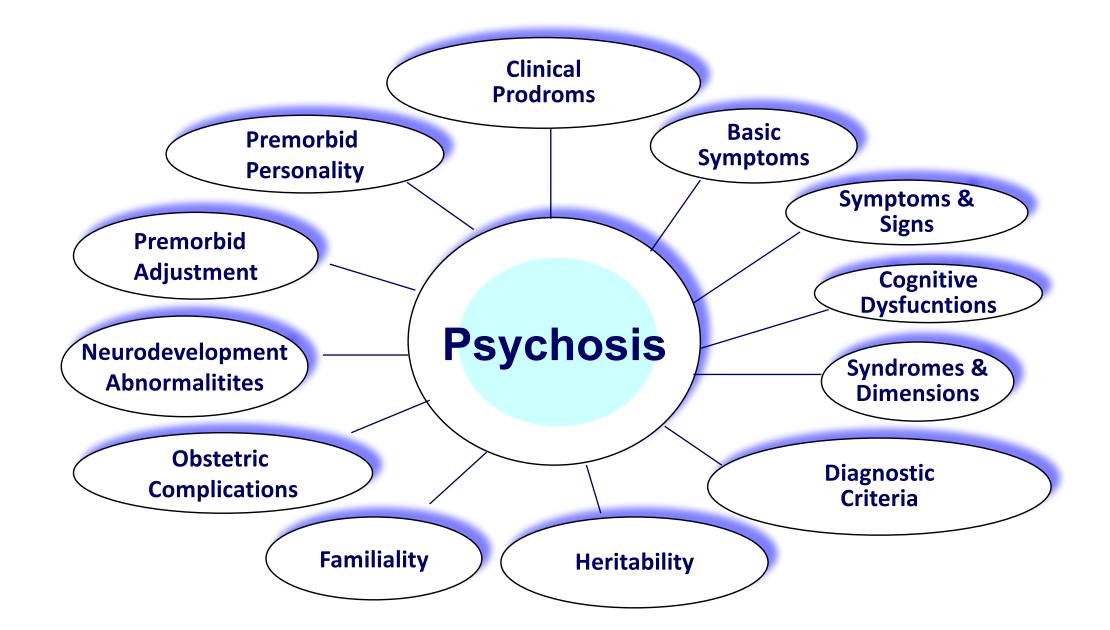


First-episode psychosis in children and adolescents: research advances and opportunities for intervention

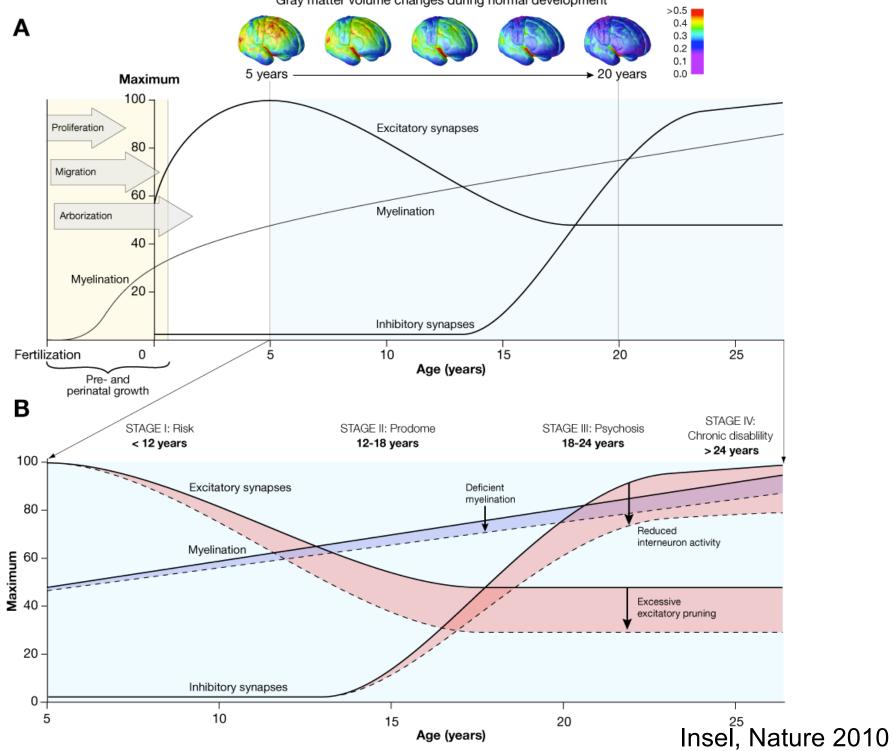
Carmen Moreno MD, PhD

Child and Adolescent Psychiatry Department Hospital General Universitario Gregorio Marañón School of Medicine Universidad Complutense IiSGM, CIBER, Madrid (Spain)

Co-chair ECNP Child and Adolescent Psychopharmacology Network

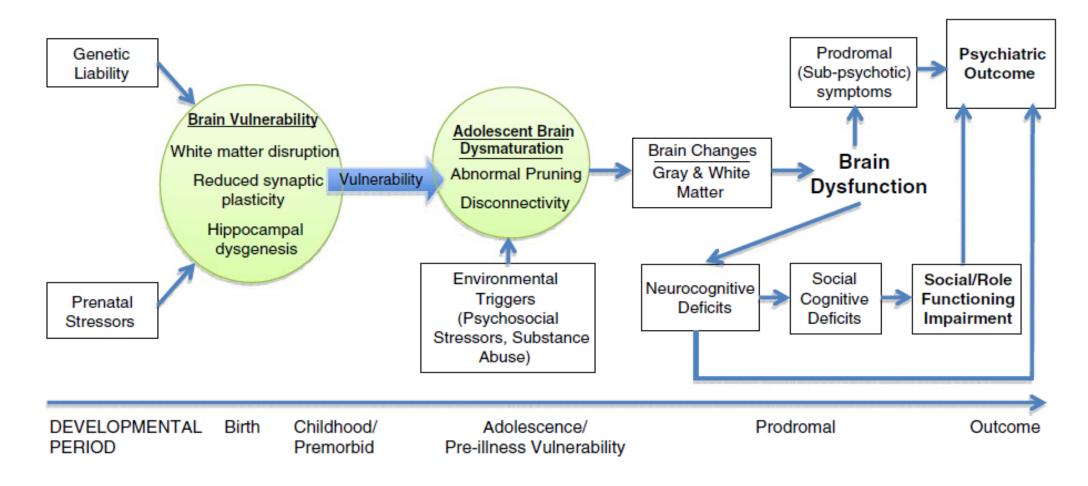


Disclosures: Carmen Moreno


Funding Source	Consultant	Grant/Research Support
European Union Funds		Х
Fundación Alicia Koplowitz	X	Х
Instituto de Salud Carlos III, Spanish Spanish Ministry of Economy and Competitiviness	x	Х
CIBERSAM		X
Janssen-Cilag	X	
Otsuka	X	
Lundbeck	X	
Bristol-Myers Squibb	X	
Servier	X	

No share holdings in pharmaceutical companies

Phenotypic complexity in Psychosis


Gray matter volume changes during normal development

Vulnerability-Stress Model

Niendam et al., 2009

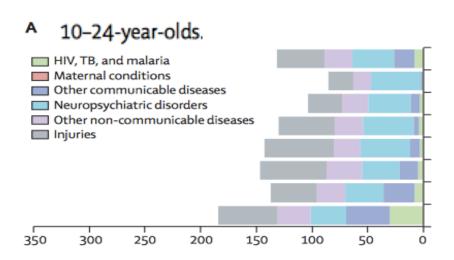
Psychiatric (and psychotic) disorders emerge during childhood and adolescence

Emergence and peak in mental disorders during adolescence

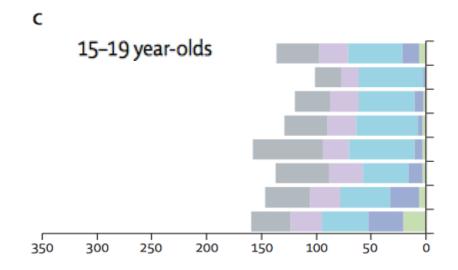
One in five adolescents have a mental illness that will persist into adulthood

ADHD, conduct disorder						
Anxiety disorders						
Mood disorders						
Schizophrenia						
Substance abuse						
Any mental illness						
	ו 0	י 5	10	15	20	25
			Age in	nyears		

Lee, Heimer et al.,


SCIENCE sciencemag.org

31 OCTOBER 2014 • VOL 346 ISSUE 6209


Global burden of disease in young people aged 10–24 years: a systematic analysis

Fiona M Gore, Paul J N Bloem, George C Patton, Jane Ferguson, Véronique Joseph, Carolyn Coffey, Susan M Sawyer, Colin D Mathers

Major causes of disease burden in DALYs in adolescents per 1000 population

Unipolar depressive disorders	193 (8-2%)	
Road traffic accidents	127 (5.4%)	
Schizophrenia	96 (4.1%)	
Bipolar disorder	88 (3.8%)	
Violence	81 (3.5%)	
Alcohol use	71 (3.0%)	
HIV/AIDS	70 (3.0%)	
Self-inflicted injuries	67 (2.8%)	
Tuberculosis	60 (2.6%)	
Lower respiratory infections	60 (2.6%)	

Unipolar depressive disorders	86 (9-9%)	
Schizophrenia	46 (5-3%)	
Road traffic accidents	46 (5-3%)	
Bipolar disorder	44 (5.1%)	
Alcohol use	34 (4.0%)	
Violence	26 (3-0%)	
Self-inflicted injuries	24 (2-8%)	
Panic disorder	23 (2.7%)	
Asthma	18 (2-0%)	
HIV/AIDS	17 (2.0%)	

Early-onset psychosis (EOP)

- Onset <18 years
- Insidious onset over a crucial developmental period
- Overlapping symptoms in different diagnoses
- Absence of diagnostic-specific categories
- Schizophrenia worst prognosis, likely due to association with premorbid functioning and negative symptoms.
 - Early-onset schizophrenia 25% partial remission, 50% chronic (Tolbert 1996)

Studies in EOP are difficult to perform (ethics, recruitment...), low sample sizes...

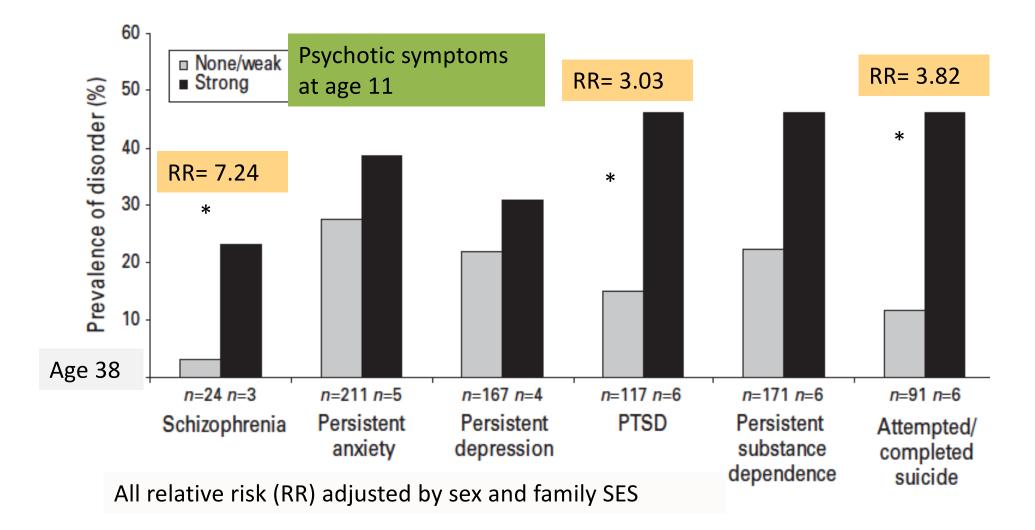
Ballageer et al. 2005; Volkmar, 1996; Menezes and Milovan, 2000McKenna et al.1994; McClellan et al. 2002; Nicolson et al, 2000

Prevalence of psychotic symptoms in childhood and adolescence

Metaanalyses o	f population-based studies
----------------	----------------------------

Median prevalence of psychotic symptoms: -children 9-12: 17%

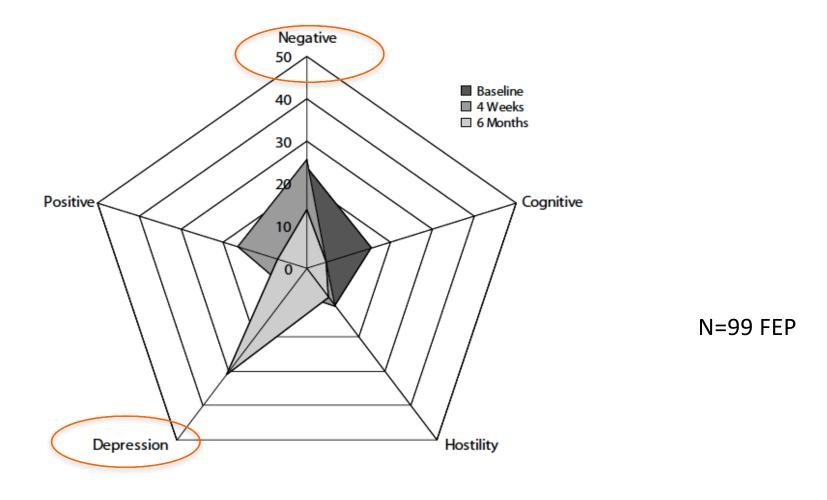
-adolescents 13-18: **7.5%**


Kelleher et al, Psychologial Medicine 2012

Cross-sample replication (n = 5422 and n = 2230)

Dimension	Prevalence Rate "Ever"	Prevalence Rate "Often"/"Almost Always"
Hallucinations	30.1	6.4
Delusions	66.5	11.2
Paranoia	89.7	26.4
Grandiosity	45.8	12.0
Paranormal beliefs	48.6	16.2
Any CAPE experience	94.8	43.3

Wigman et al, Schiz Bull 2011


Psychotic symptoms in childhood as a marker of general vulnerability

H. L. Fisher et al.

Psychological Medicine (2013), 43, 2077–2086.

Predominance of Symptoms Over Time in Early-Onset Psychosis

Dimensional structure remained stable over time

Rapado-Castro et al, 2010

THE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY

THE ASSOCIATION FOR CHILD AND ADOLESCENT MENTAL HEALTH

Explore this journal >

Two-year diagnostic stability in early-onset first-episode psychosis

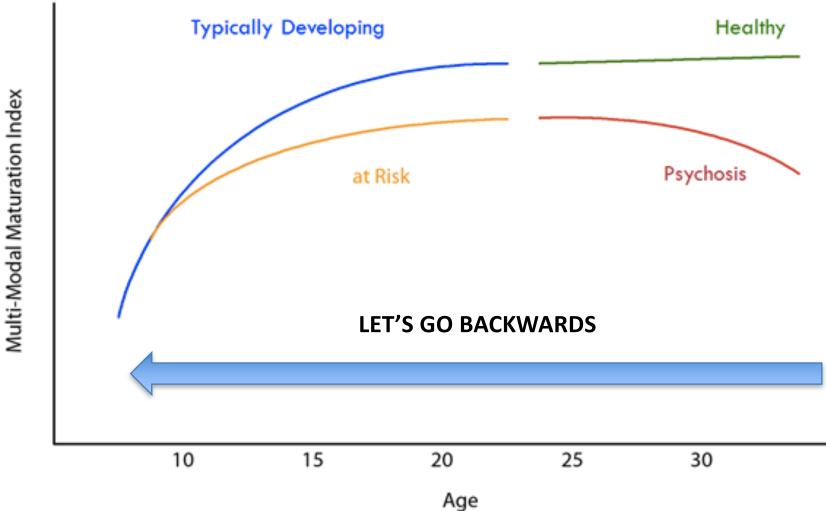
Josefina Castro-Fornieles, Immaculada Baeza, Elena de la Serna, Ana Gonzalez-Pinto, Mara Parellada, Montserrat Graell, Dolores Moreno, Soraya Otero, Celso Arango

First published: 20 July 2011 Full publication history

N= 83, ages 9-17

Bipolar disorder	13	Bipolar disorder	12	92.31	<i>p</i> = 1.00 ^b
Schizophrenia spectrum dis.	40	Psychotic disorder NOS Schizophrenia spectrum dis.	36	90.00	$p = 0.125^{b}$
Schizophrenia	5	Schizophrenia	5	100	
Schizoaffective disorder	5	Schizoaffective disorder	5	100	
Schizophreniform disorder	30	Schizophreniform disorder	0	0	
		Schizophrenia	26	(86.66) ^a	
		Bipolar disorder	1	(0000)	
		No present diagnosis	3		
Depressive disorder	8	Depressive disorder	3	37.50	$p = 0.063^{b}$
P	-	Bipolar disorder	2	(25.00%)ª	P
		Schizophrenia	1	()	
		Psychotic disorder NOS	1		
		No present diagnosis	1		
Other psychosis	22	Other psychotic disorder	3	13.64	<i>p</i> < 0.001 ^b
Psychotic disorder NOS	17	Psychotic disorder NOS	2	11.76	P
r sycholic abortaci 1100		Schizophrenia	7	11.10	
		Bipolar disorder	4		
		Schizoaffective disorder	2		
		Depressive disorder	1		
		No present diagnosis	1		
Brief psychotic disorder	5	Brief psychotic disorders	0	0	
blief psycholic disorder	0	Schizophrenia	2	0	
		Psychotic disorder NOS	1		
		No present diagnosis	2		
		No present diagnosis	4		
Global consistency for	all diag	noses 63.9% Castr	o-Fornie	eles et al, 2011	

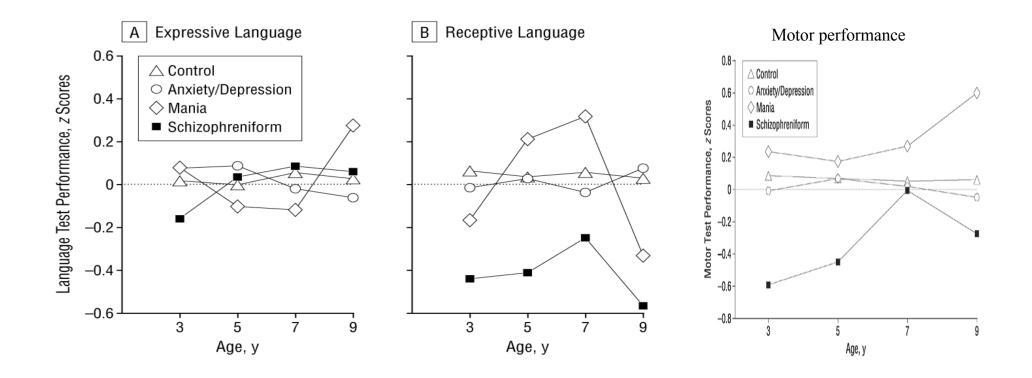
VIEWPOINT


Mental Disorders in Childhood Shifting the Focus From Behavioral Symptoms to Neurodevelopmental Trajectories

Thomas R. Insel, MD National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.

+ Author Reading at jama.com The recent Global Burden of Disease Study reported on morbidity and mortality for 291 disorders and injuries across 187 countries.¹ Expressed as "years lost to disability," mental and substance abuse disorders accounted for nearly 23% of global morbidity, more than any other group of disorders.² Although it may seem surprising that mental and substance abuse disorders would, by this measure, be more disabling than heart disease or cancer, at least part of the explanation velopment are extraordinary. In contrast to other organ systems, the brain develops, in part, through the exuberant overproduction of cells and connections, followed by a several-year sculpting of pathways by massive elimination of much of the neural architecture along with myelination of select fibers for rapid transmission of information. The human brain continues to develop into the third decade, with cortical maturation usually not completed until age 25.

JAMA May 7, 2014 Volume 311, Number 17


Developmental trajectories as vulnerability markers of psychosis

T. Satterthwaite and R. Gur, University of Pennsylvania

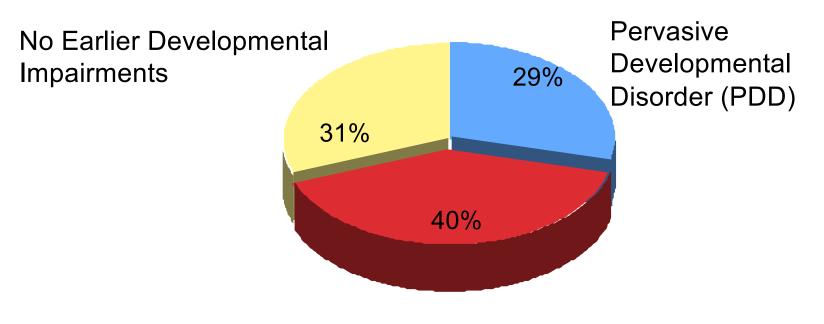
Abnormalities in language and motor development in psychosis

Dunedin Multidisciplinary Health and Development Study Total birth cohort born 1972/73 in Dunedin (N=1037), age 26

Cannon et al (2002) Arch Gen Psych

Premorbid impairments in early-onset psychosis: Differences between patients with schizophrenia and bipolar disorder

Sociodemographic characteristics, premorbid IQ, and developmental abnormalities in SZ and BP groups compared with healthy controls.

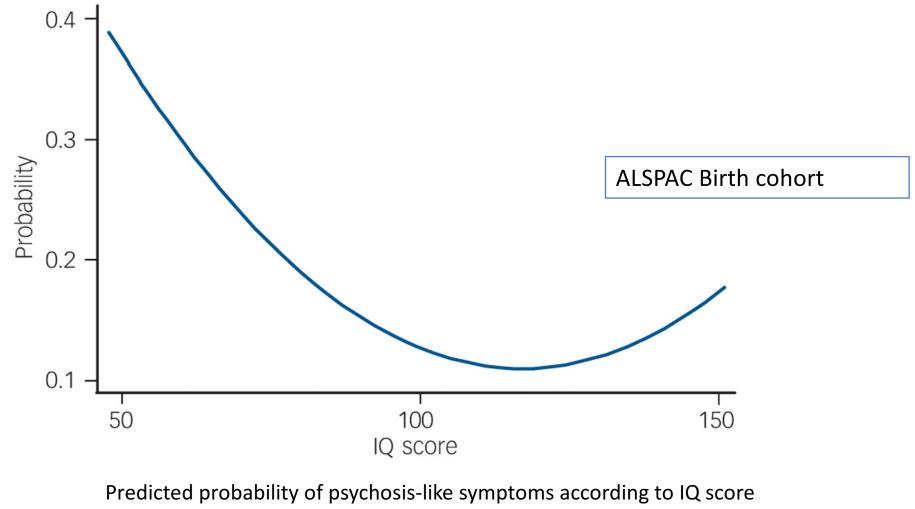

	Controls (N=91) SZ (N=46) BP (N=23) Statistic			Comparisons		
	Mean (SD)	Mean (SD)	Mean (SD)	F ^a	р	
Age	15.1 (1.9)	15.42 (2.01)	16.04 (1.39)	2.113	0.124	
Subjects' years of education	8.8 (1.87)	8.2 (2.17)	8.96 (1.29)	2.229	0.111	
Parental years of education	14.91 (4.10)	11.69 (3.78)	10.87 (2.71)	16.463	<0.001	$Controls^{c} > SZ^{***}; controls > BR^{***}$
Parental SES	3.29 (1.34)	2.73 (1.35)	2.43 (1.04)	5.249	0.006	Controls ^c >BP [*]
Premorbid IQ	103 (12.91)	86.33 (13.16)	87.17 (16.43)	25.887	<0.001	$Controls^{c} > SZ^{***}; controls > BP^{***}$
-	%	%	%	χ^{2b}	р	
Gender (% male)	61.5	73.3	69.6	2.017	0.365	
Developmental abnormalities	11.1	27.3	4.3	8.461	0.015	Controls ^b <sz<sup>*</sz<sup>

Childhood PAS scores in schizophrenia and bipolar disorder compared with healthy control group.

	SZ (N=46)		BP $(N=2)$	23)	Controls	Controls (N=91)			Comparisons ^a
\frown	x	SD	X	SD	x	SD	$\mathbf{F}^{\mathbf{b}}$	р	
Total PAS-C	0.36	0.21	0.28	0.16	0.12	0.10	18.554	<0.001	Controls <sz***; controls<bp***<="" td=""></sz***;>
PAS Acad-C	0.36	0.21	0.35	0.20	0.16	0.13	5.784	0.004	Controls <sz<sup>**; Controls<bp<sup>*</bp<sup></sz<sup>
PAS Social-C	0.36	0.28	0.21	0.21	0.08	0.13	20.787	<0.001	Controls <sz<sup>***; controls<bp<sup>**</bp<sup></sz<sup>
PAS1-C	2.24	1.93	1.13	1.52	0.53	0.87	16.078	<0.001	Controls <sz<sup>***; BP<sz<sup>*</sz<sup></sz<sup>
PAS2-C	2.07	1.74	1.39	1.20	0.45	0.79	20.280	<0.001	Controls <sz***; controls<bp***<="" td=""></sz***;>
PAS3-C	3.04	1.55	3.09	1.31	1.82	1.30	1.389	0.253	
PAS4-C	1.33	1.38	1.09	1.28	0.15	0.58	11.003	≤0.001	Controls <sz<sup>***; controls<bp<sup>**</bp<sup></sz<sup>

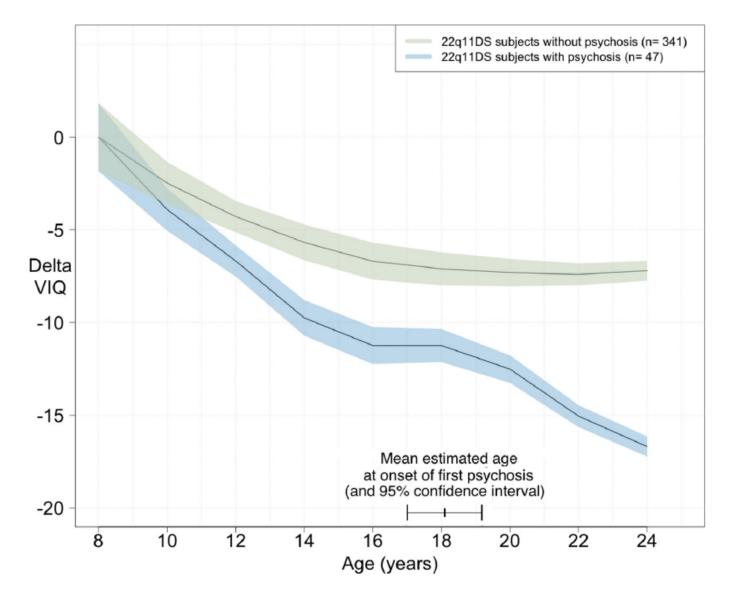
Payá et al 2013

Developmental disorders in COS



Hollis Type Developmental Lag/Disorder

Possible common early brain developmental pathway mediating copy number variant association with early onset disorder


Rapoport et al, 2009

Childhood IQ as a risk factor for psychosis

(Horwood, J. et al. Br J Psychiatry 2008)

Cognitive decline preceding psychosis in 22q11 deletion syndrome

Vorstman et al.

JAMA Psychiatry. 2015 April 1; 72(4): 377-385

Neurocognitive outcomes in EOP and controls

	BASELINE	ASSESSME	ENT	2-YEAR ASSESSMENT			
	EOP (N=24)	Controls (N=29)	Analysis	EOP (N=22	Controls (N=29)	Analysis	
Attention	-0.72±0.92	0.01±0.74	<i>p</i> = 0.002	-0.30±0.75	0.30±0.55	<i>p</i> =0.002	
Working memory	-1.30±0.98	0.03±0.85	<i>p</i> ≤0.001	-1.10±0.82	0.28±0.99	<i>p</i> ≤ 0.001	
Executive function	-0.88±0.75	0±0.68	<i>p</i> ≤0.001	-0.53±0.61	0.25±0.56	<i>p</i> ≤0.001	
Learning & memory	-1.80±1.47	0.01±0.79	<i>p</i> ≤0.001	-1.03±1.39	0.16±0.91	<i>p</i> ≤0.001	
Global	-1.17±0.74	0.01±0.53	<i>p</i> ≤ 0.001	-0.71±0.75	0.24±0.91	<i>p</i> ≤0.001	

-EOP showed lower scores than controls in overall cognitive functioning and in all specific domains assessed both at Baseline and at 2-year FU

-Significant differences between EOP subtypes only for Learning and memory (p<0.04), but significance disappeared after covarying with PANSS scores at 2-yr (p=0.35)

Mayoral et al. Neuropsychological functioning in adolescents with first episode psychosis. Eur Psychiatry 2008; 23(5):375-83

Journal of Child Psychology and Psychiatry 53:3 (2012), pp 323-331

doi:10.1111/j.1469-7610.2011.02475.x

Longitudinal study of neurological soft signs in first-episode early-onset psychosis

		Longitudinal follow-up									
	Н	Healthy controls					Time × Group Patients interaction			After controlling for changes in the PANSS	
	F	df	<i>p</i> -Value	F	df	<i>p</i> -Value	<i>p</i> -Value	<i>p</i> -Value			
Sensory integration	6.00	(1, 79)	.016	9.21	(1, 70)	.003	.249 ^a	.033			
Motor coordination	0.19	(1, 79)	.658	6.44	(1, 70)	.013	.032 ^b	.038			
SCMA	2.39	(1, 79)	.126	8.51	(1, 70)	.005	.027 ^b	.197			
Others	1.70	(1, 79)	.195	35.65	(1, 68)	< .001	< .001 ^b	< .001			
Total	6.67	(1, 79)	.012	34.80	(1, 68)	< .001	< .001 ^b	< .001			

EOP showed more NSS than controls both at baseline (p < .001) and 2-year FU (p < .001)

No differences were found in the number of signs among diagnostic subgroups

Mayoral et al., 2012

Contents lists available at ScienceDirect

Psychiatry Research

journal homepage: www.elsevier.com/locate/psychres

The impact of neuropsychological functioning and coping style on perceived stress in individuals with first-episode psychosis and healthy controls

	Perceived stress					
	FEP		нс			
Coping style	r*	р	r*	р		
Task-Focussed	-0.429	0.014	-0.066	0.747		
Emotion-Focussed	0.433	0.013	0.507	0.008		
Avoidance-Focussed	-0.250	0.167	-0.035	0.866		
Neuropsychological Test/Domain	r *	р	r *	р		
General intelligence						
Premorbid IQ	0.423	0.018	-0.592	0.002		
Current IQ	0.273	0.125	-0.479	0.013		
Immediate attention						
Digit Span forward	0.319	0.075	-0.167	0.416		
Working memory						
Digit Span backward	0.306	0.088	-0.400	0.043		
Letter-Number Sequencing Verbal learning and memory	0.495	0.004	-0.519	0.007		

Contents lists available at ScienceDirect

Schizophrenia Research

journal homepage: www.elsevier.com/locate/schres

Fraguas et al., 2015

Progressive brain changes in children and adolescents with early-onset psychosis: A meta-analysis of longitudinal MRI studies

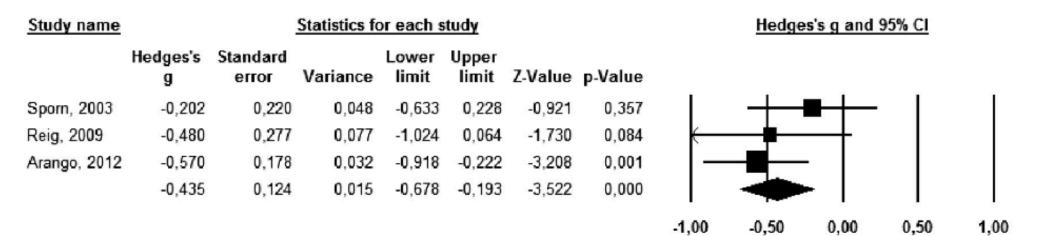


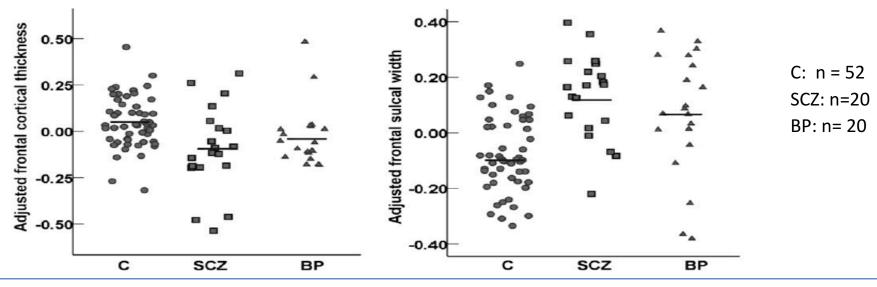
Fig. 2. Forest plot for the meta-analysis of the three studies assessing longitudinal changes in frontal gray matter volume.

Five original studies with 156 EOP Mean duration of follow-up of 2.46 years (range 2.02–3.40)

EOP patients show greater progressive frontal GM loss over the first few years after illness onset.

Age at baseline MRI and diagnosis of schizophrenia moderate brain volume changes.

Contents lists available at ScienceDirect


Schizophrenia Research

CrossMark

Cortical morphology of adolescents with bipolar disorder and with schizophrenia

Joost Janssen ^{a,b,c,d,*,1}, Yasser Alemán-Gómez ^{a,b,h,1}, Hugo Schnack ^d, Evan Balaban ^e, Laura Pina-Camacho ^{a,b,j}, Fidel Alfaro-Almagro ^a, Josefina Castro-Fornieles ^{b,f,i}, Soraya Otero ^{b,g}, Inmaculada Baeza ^{b,f}, Dolores Moreno ^{a,b,c}, Nuria Bargalló ^{b,k,i}, Mara Parellada ^{a,b,c}, Celso Arango ^{a,b,c}, Manuel Desco ^{a,b,h}

-Cortical thinning, decreased gyrification index and increased sulcal width of the frontal cortex are present at the time of the first psychotic episode.

-Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area.

-These results suggest that abnormal growth of the frontal cortex represents a shared endophenotype for psychosis

ARCHIVES OF GENERAL PSYCHIATRY Progressive brain changes in children and adolescents with first-episode psychosis

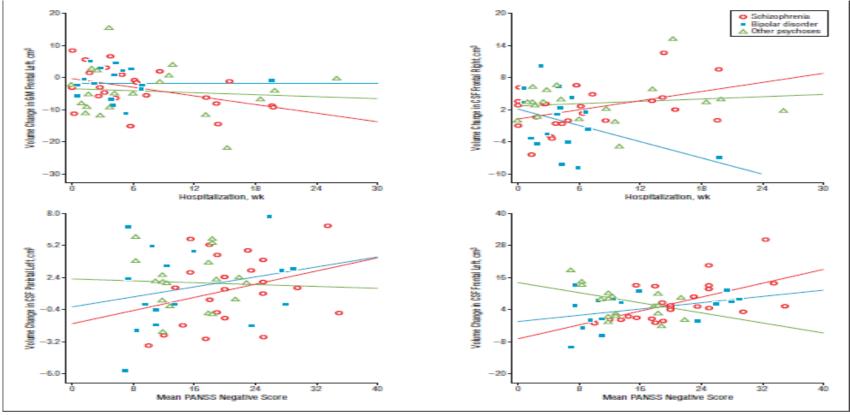
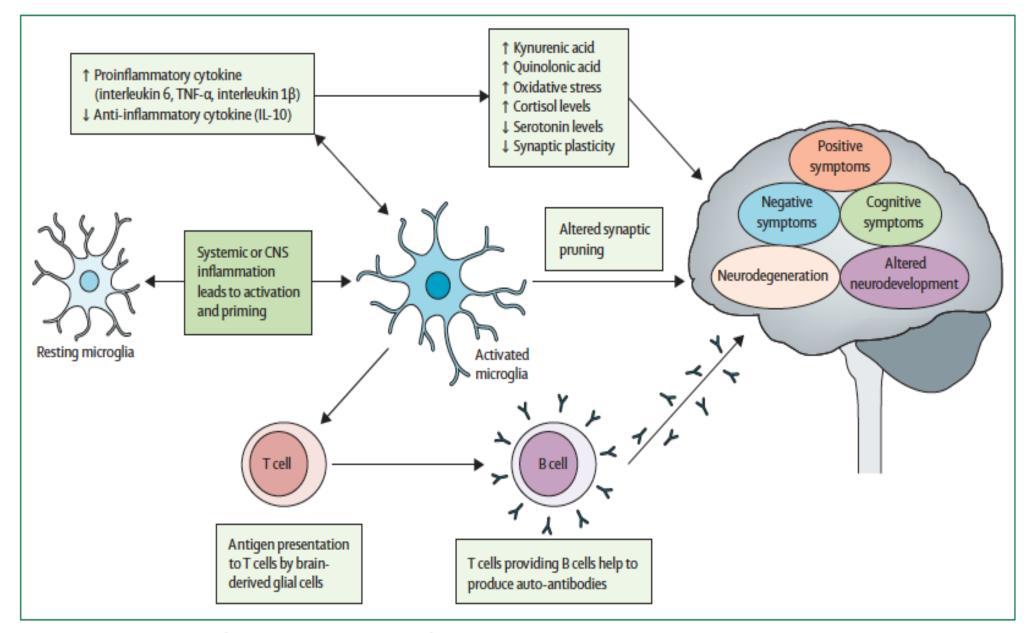



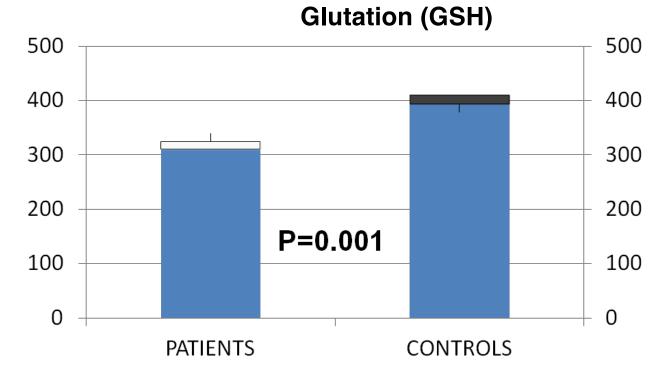
Figure. Relationship between the number of weeks hospitalized and the mean baseline and follow-up Positive and Negative Syndrome Scale (PANSS) score and gray matter (GM) and cerebrospinal fluid (CSF) volume changes within diagnostic subgroups.

Higher GM loss and LCR volume in frontal lobe after 2 years Volume loss correlated with worst clinical prognosis

Arango et al., 2012

Figure 2: Possible mechanisms of immune-mediated causation of psychosis

TNFα-tumour necrosis factor α. CNS-central nervous system.


RESEARCH ARTICLE

Reduced antioxidant defense in early onset first-episode psychosis: a case-control study

Juan Antonio Micó¹, Maria Olga Rojas-Corrales¹, Juan Gibert-Rahola¹, Mara Parellada², Dolores Moreno², David Fraguas³, Montserrat Graell⁴, Javier Gil⁵, Jon Irazusta⁵, Josefina Castro-Fornieles⁶, Cesar Soutullo⁷, Celso Arango², Soraya Otero⁸, Ana Navarro⁹, Inmaculada Baeza⁶, Mónica Martínez-Cengotitabengoa⁹, Ana González-Pinto^{10*}

102 children and adolescents with a first psychotic episode 98 healthy controls

-Decrease in antioxidant defense: decreased TAS and glutathione levels -Higher lipid damage (LOOH) and glutathione peroxidase activity

Micó et al. BMC Psychiatry 2011, 11:26 http://www.biomedcentral.com/1471-244X/11/26

Antiinflammatory and oxidative/nitrosative stress markers in first-episode psychosis

N= 117 FEP

	В	SE	Wald	OR	CI 95%	Р
PGE ₂	0.005	0.002	3.721	1.005	1.000-1.009	.054
COX2	0.017	0.007	6.509	1.017	1.004-1.031	.011
NO-2	0.369	0.163	5.137	1.447	1.051-1.991	.023
TBARS	0.182	0.162	1.269	1.200	0.874-1.649	.260
PPARγ act	-0.832	0.631	1.741	0.435	0.126-1.498	.187
15d-PGJ ₂	-0.023	0.007	10.099	0.977	0.963-0.991	.001

Abbreviations: B, median; COX-2: cyclooxygenase 2; CI, confidence interval; NO-2, nitrites; OR, odds ratio; PGE2, prostaglandin E2; PPARg act, peroxisome proliferator activated receptors activity; SE, standard error; TBARS, thiobarbituric acid reactive substances; 15d-PGJ2, prostaglandin 15-deoxy-PGJ2. Association between FEP and level of biomarker. All the biomarkers were analyzed together and adjusted for age, gender, body mass index, cannabis use per month, and cotinine level. The bold values in the table represent the values reaching statistical significance (P<.05).

Increase in intracellular components of a main pro-inflammatory pathway and decrease in the antiinflammatory

Psychosis may be biologically toxic

Differences on pro/anti-inflammatory markers between baseline and 6 months follow-up in FEP

Marker	Patients baseline (N=85)	Patients follow-up (N=85)	Statistics	p value
iNOS -WBc-	131.44 ± 51.43	109.05 ± 52.89	Z=-2.47	0.013
COX2 -WBc-	161.08 ± 164.82	230.60 ± 169.86	Z=-3.13	0.002
NFkB -act-	12.13 ± 23.75	5.52±2.75	Z=-0.20	0.845
PGE ₂ -sol-	522.29 ± 770.33	870.02 ± 741.96	Z= -4.58	<0.001
NO ⁻ 2 -sol-	14.94 ± 6.20	17.61 ± 7.34	Z=-1.88	0.060
TBARS - sol-	3.65 ± 3.81	4.50 ± 1.75	Z=-3.69	<0.001
lκBα-WBc-	86.36 ± 49.97	104.21 ± 82.09	Z=-0.73	0.468
15d-PGJ ₂ -sol-	571.25 ± 154.15	408.89 ± 150.69	Z=-5.72	<0.001
PPARy -WBn-	79.45 ± 33.51	55.94 ± 49.09	Z=-2.35	0.019
PPARy -act-	1.29 ± 0.93	1.09 ± 0.55	Z=-1.11	0.267

García-Bueno et al, Int J Neuropsychopharmacol, 2014

Oxidative stress variables in healthy controls (HC) and healthy controls with family history of psychosis (HC-FHP)

	Mean (SD)		U	z	р	OR
	нс	нс-ғнр				
CAT (U/ml)	10988 (4386)	9072 (6720)	434.00	0.828	0.408	-
cGPx (mU/ml)	905 (459)	953 (1100)	381.500	1.423	0.155	-
GSH (mM)	383 (156)	433 (179)	412.00	-1.078	0.281	-
LOOH (µM)	5.97 (3.90)	7.50 (6.24)	362.00	-0.388	0.698	-
SOD (U/ml)	4038 (2936)	2618 (2653)	363.00	1.633	0.102	-
TAS (mM)	1.31 (0.47)	0.95 (0.40)	281.00	2.606	0.009	2.937

Results non affected by social and family environment factors After adjusting for FES dimensions TAS diff remained: OR= 10.86, 95% CI= 1.82–64.74, p= 0.009

Gonzalez-Pinto et al., BMC Psychiatry, 2012

FEP onset ≤18 vs ≥25: Baseline results

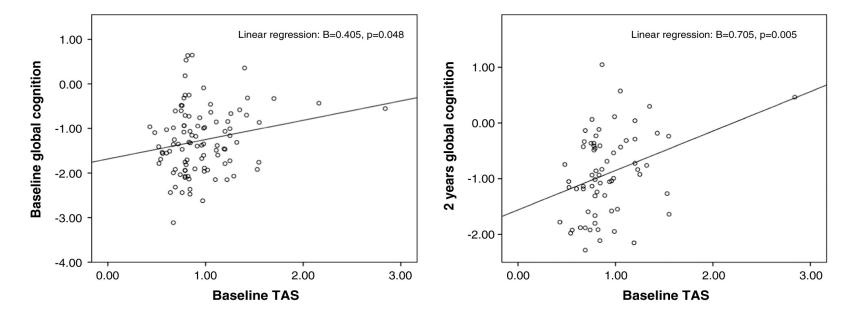
Marker	Onset ≤18	Onset ≥25	Intergroup analyses (onset <u>≤18_ys</u> onset ≥25)	
Baseline	(mean, SD) (n=27)	(mean, SD) (n=43)		
			Statistic (F)	P-Value
NF <i>k</i> B-act	24.96 (37.90) (n=13)	8.53 (15.17) (n=21)	7.184	0.012
iNOS-WBc-	119.0 (49,03) (n=22)	143.34 (50.63)(n=30)	1.706	0.198
COX2-WBc-	174.90 (163.63)(N=21)	126.93 (47.62)(n=30)	1.324	0.256
NO ⁻² -sol-	15.32 (7.81) (n=13)	15.40(5.22) (n=22)	0.189	0.667
PGE ₂ -sol-	554.37(501.38) (n=25)	431.67(439.79)(n=39)	1.919	0.171
TBARS -sol-	2.88(2.42) (n=22)	2.99 (3.08)(n=38)	0.217	0.643
lkBα-wbC-	89.51(55.22) (n=22)	80.89(45.44)(n=30)	0.011	0.918
15dPGJ ₂ -sol-	558.35(136.68) (n=25)	608.25(193.59)(n=35)	0.818	0.370
PPAR-act-	1.38 (1.04)(n=15)	1.11(0.92)(n=29)	1.062	0.309

Non-parametric 1 factor ANCOVA. Independent variable: age-onset group; dependent variables: values of pro- and anti-inflammatory markers; covariates: days between first psychotic symptoms until baseline visit, age of onset of cannabis use, tobacco use, total dose of antipsychotics (chlorpromazine equivalents)

FEP onset ≤18 vs ≥25: 6mo-FU results

Marker	Onset ≤18	Onset ≥25	Intergroup analyses	
6-months FU	(mean, SD)	(mean, SD)	(onset <u>≤18_vs</u> or	nset ≥25)
	(n=27)	(n=43)	Statistic (F)	P-Value
NFkB-act	6.01 (2.06)(n=20)	5.65 (3.24)(n=38)	3.898	0.042
iNOS-WBc	125.13 (49.30)(n=18)	105.14 (53.46)(n=37)	1.572	0.216
COX2-WBc	189.57(136.72)(n=18)	271.51(203.93)(n=37)	2.148	0.149
NO ⁻ 2-sol-	16.28(7.06)(n=20)	19.31(7.00)(n=38)	1.782	0.188
PGE ₂ -sol	968.52(667.41)(n=20)	676.39(638.38)(n=38)	3.884	0.070
TBARS -sol	4.61(2.57)(n=20)	4.53(1.36)(n=38)	0.001	0.975
IkBα-wbC	97.39(76.96)(n=18)	116.32(91.71)(n=37)	0.277	0.601
15dPGJ ₂ -sol	375.60(120.72)(n=20)	424.60(183.27)(n=38)	1.551	0.219
PPAR-act	1.19(0.42)(n=20)	1.138(0.64)(n=38)	2.529	0.118

Non-parametric 1 factor ANCOVA. Independent variable: age-onset group; dependent variables: values of pro- and anti-inflammatory markers; covariates: days between first psychotic symptoms until baseline visit, age of onset of cannabis use, tobacco use, total dose of antipsychotics (chlorpromazine equivalents)


Schizophrenia Research

journal homepage: www.elsevier.com/locate/schres

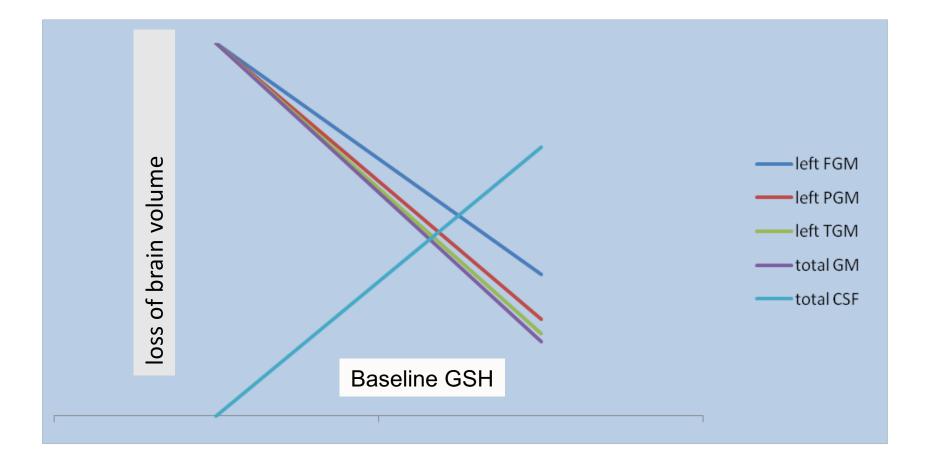
Basal low antioxidant capacity correlates with cognitive deficits in early onset psychosis. A 2-year follow-up study

105 early onset-first episode psychosis and 97 healthy controls Age 9–17 years

-Oxidative imbalance in this population (lower baseline TAS) has been associated with worse cognitive outcomes at 2-year follow-up

-TAS was not associated with cognitive functioning in healthy controls

Contents lists available at SciVerse ScienceDirect

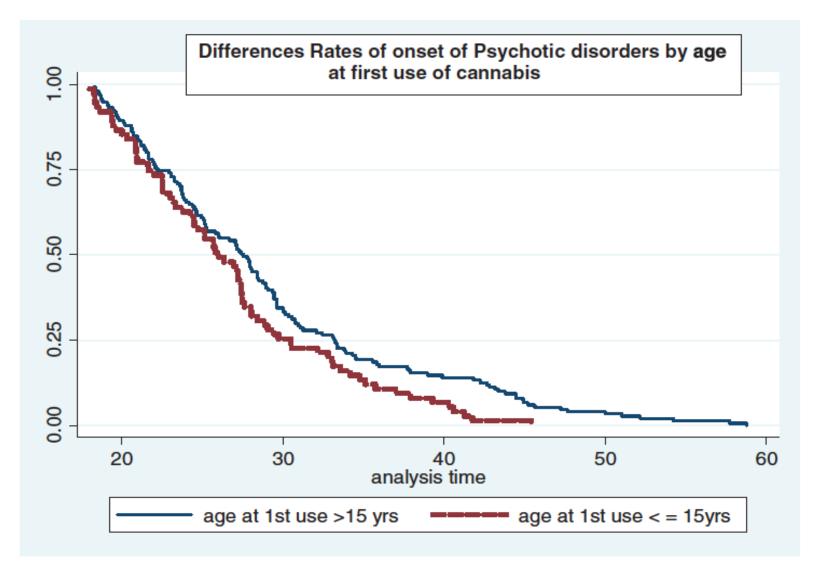

Schizophrenia Research

Decreased glutathione levels predict loss of brain volume in children and adolescents with first-episode psychosis in a two-year longitudinal study

David Fraguas ^{a,b}, Ana Gonzalez-Pinto ^c, Juan Antonio Micó ^d, Santiago Reig ^{a,e}, Mara Parellada ^a, Mónica Martínez-Cengotitabengoa ^c, Josefina Castro-Fornieles ^f, Marta Rapado-Castro ^a, Immaculada Baeza ^f, Joost Janssen ^e, Manuel Desco ^{e,g}, Juan Carlos Leza ^h, Celso Arango ^{a,*}

Fraguas et al., Schizophrenia Research 2012

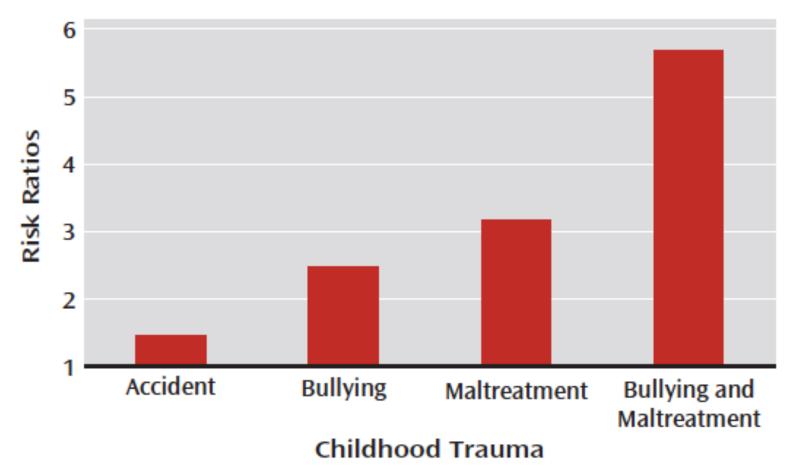
Schizophrenia Bulletin doi:10.1093/schbul/sbt198


Differential Neurodevelopmental Trajectories in Patients With Early-onset Bipolar and Schizophrenia Disorders

Early-onset psychotic bipolar patients have low intelligence quotient, more neurological signs, reduced frontal gray matter at the time of their first psychotic episode, and greater brain changes than healthy controls.

However, patients with early-onset schizophrenia seem to have more social impairment, developmental abnormalities (eg, language problems), and lower academic achievement in childhood than earlyonset bipolar patients.

Some of these abnormal developmental trajectories are more related to early-onset psychotic symptoms of these 2 syndromes than to categorically defined DSM disorders.


Earlier onset of cannabis use associated with earlier onset of psychosis

Di Forti et al., Schizophr Bull (2014) 40 (6): 1509-1517.

Child abuse and risk for psychosis

FIGURE 1. Risk of Psychotic Symptoms at Age 12 Associated With Cumulative Childhood Trauma

Am J Psychiatry 168:1, January 2011

Prognostic factors depend on outcomes

- Clinical (diagnosis, symptom type and severity, course-relapse/remission/readmission, treatment, insight, suicidality)
- Functional (global, social, educational/occupational, disability/dependency, quality of life
- **Cognitive** (attention, working memory, executive function, global cognition, IQ)
- **Neuroimaging** (volume change)
- Treatment -related

Diaz-Caneja et al., 2015

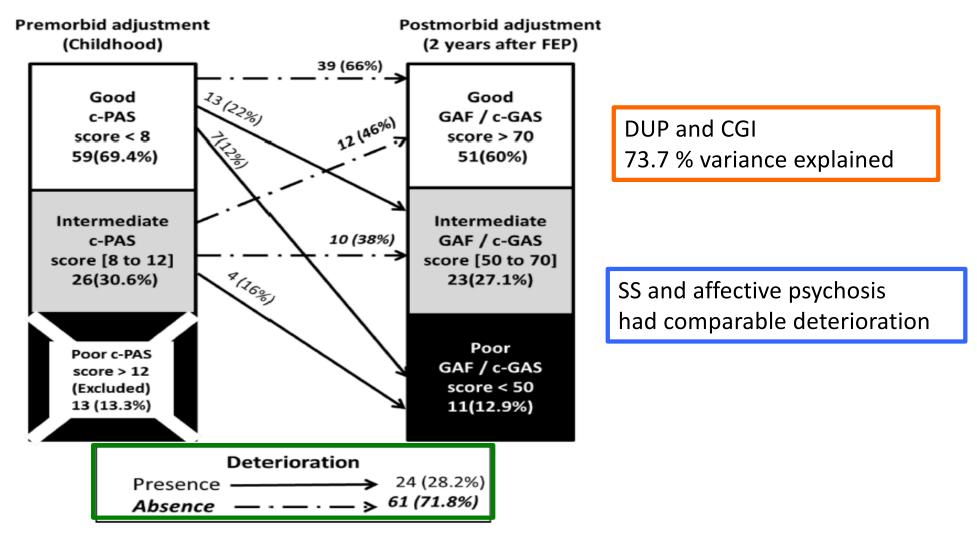
REVIEW ARTICLE OPEN Predictors of outcome in early-onset psychosis: a systematic review

The most replicated predictors of worse clinical, functional, cognitive, and/or biological outcomes in EOP

- Premorbid difficulties (developmental delays and poor premorbid adjustment)
- Symptom severity (especially of negative symptoms) at baseline
- Longer duration of untreated psychosis (DUP)

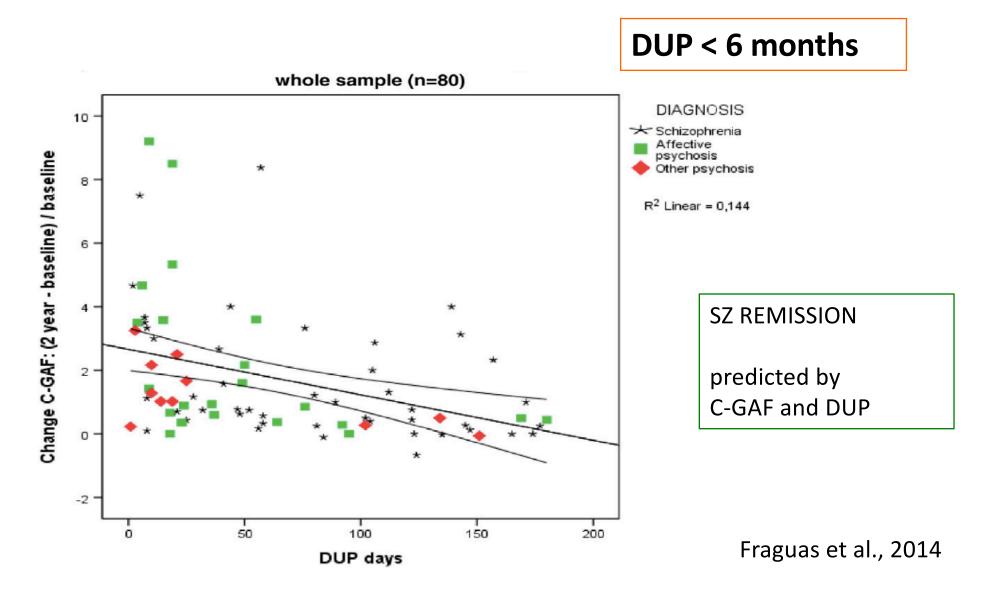
Diaz-Caneja et al., 2015

Long-term outcome of early-onset schizophrenia vs other early-onset psychosis


21 studies, N= 716, mean age ≤18 years

Outcome variable	EOS			Mixed							Analysis			
	Mean	SD	Range	Median	Mean Rank	Mean	SD	Range	Median	Mean Rank	U	z	р	rho
	N = 422	N = 422			N = 294									
Good	15.4	7.7	0-28	15.8	300.05	19.6	9.1	0-29	21.0	442.40	37368	-9.08	<.001	0.34
Moderate	24.5	14.6	0-60	23.7	299.75	33.6	12.9	18-52	37.0	442.83	37241	-9.13	<.001	0.3
Poor	60.1	18.9	27-100	60.5	410.59	46.8	17.8	24-79	47.0	283.73	40051	-8.09	<.001	0.30

Clemmensen et al., 2012


ORIGINAL CONTRIBUTION

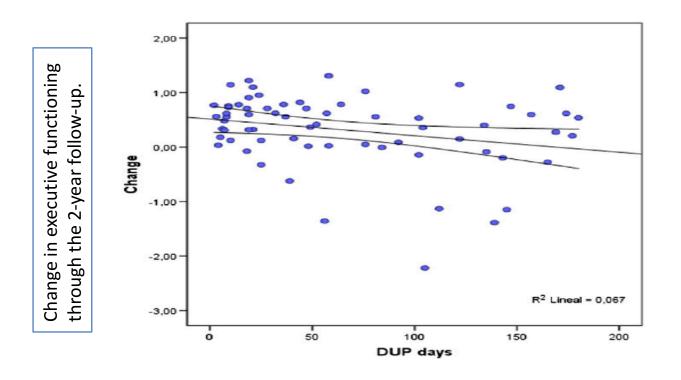
Functional deterioration from the premorbid period to 2 years after the first episode of psychosis in early-onset psychosis

Del Rey Mejías et al., 2015

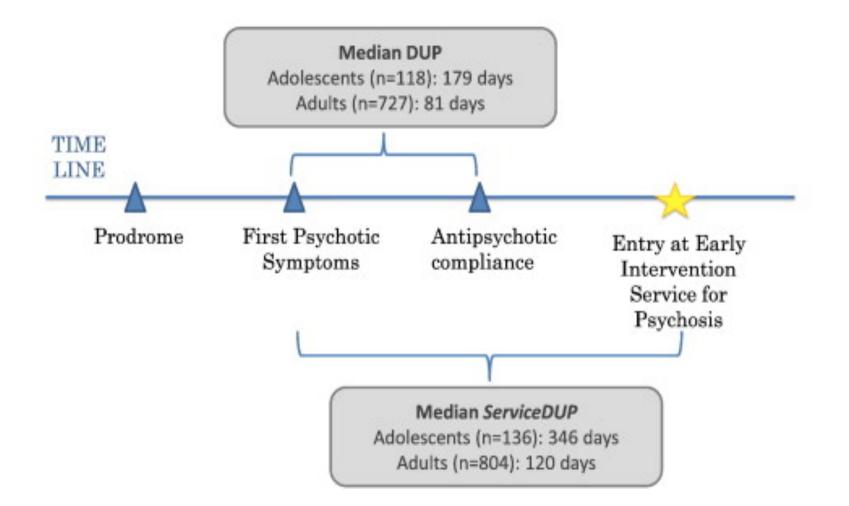
Duration of untreated psychosis predicts functional and clinical outcome in children and adolescents with first-episode psychosis

Contents lists available at ScienceDirect

Schizophrenia Research


journal homepage: www.elsevier.com/locate/schres

A longitudinal study on the relationship between duration of untreated psychosis and executive function in early-onset first-episode psychosis



David Fraguas ^{a,*}, Jessica Merchán-Naranjo ^a, Ángel del Rey-Mejías ^a, Josefina Castro-Fornieles ^b, Ana González-Pinto ^c, Marta Rapado-Castro ^{a,d,e}, Laura Pina-Camacho ^{a,f}, Covadonga M. Díaz-Caneja ^a, Montserrat Graell ^g, Soraya Otero ^h, Inmaculada Baeza ^b, Carmen Moreno ^a, Mónica Martínez-Cengotitabengoa ^{c,i}, Elisa Rodríguez-Toscano ^a, Celso Arango ^a, Mara Parellada ^a

Shorter DUP (e.v. 8.7%, p= 0.013) and greater severity of baseline negative symptoms (e.v. 10.0%, p= 0.008) were significantly associated with greater improvement in EF.

DUP for adolescent- vs adult-onset psychosis

Dominguez et al. 2013

PSYCHOSIS

Anti-NMDAr encephalitis

Dementia

Psychosis due to medical conditions

Post-partum psychosis

Delusional disorder

Brief psychotic disorder

Schizophreniform disorder

Cultural bound psychotic syndromes

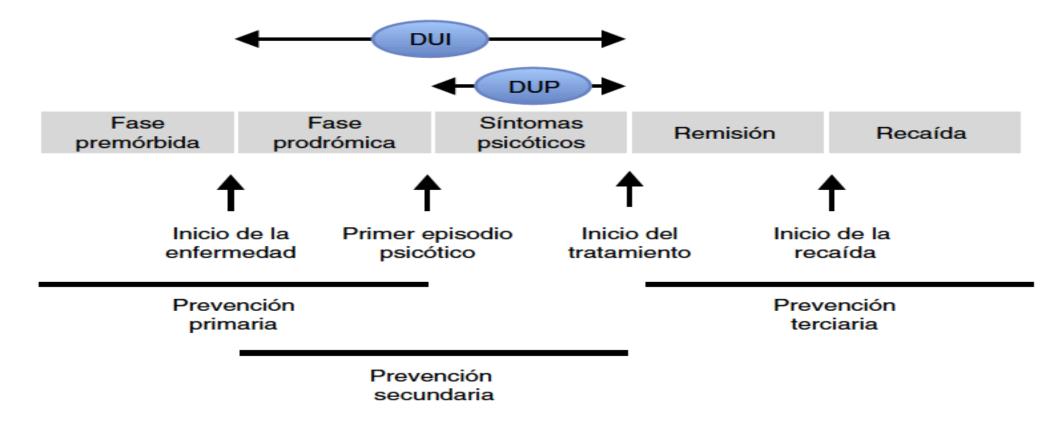
Substance use

Borderline personality disorder

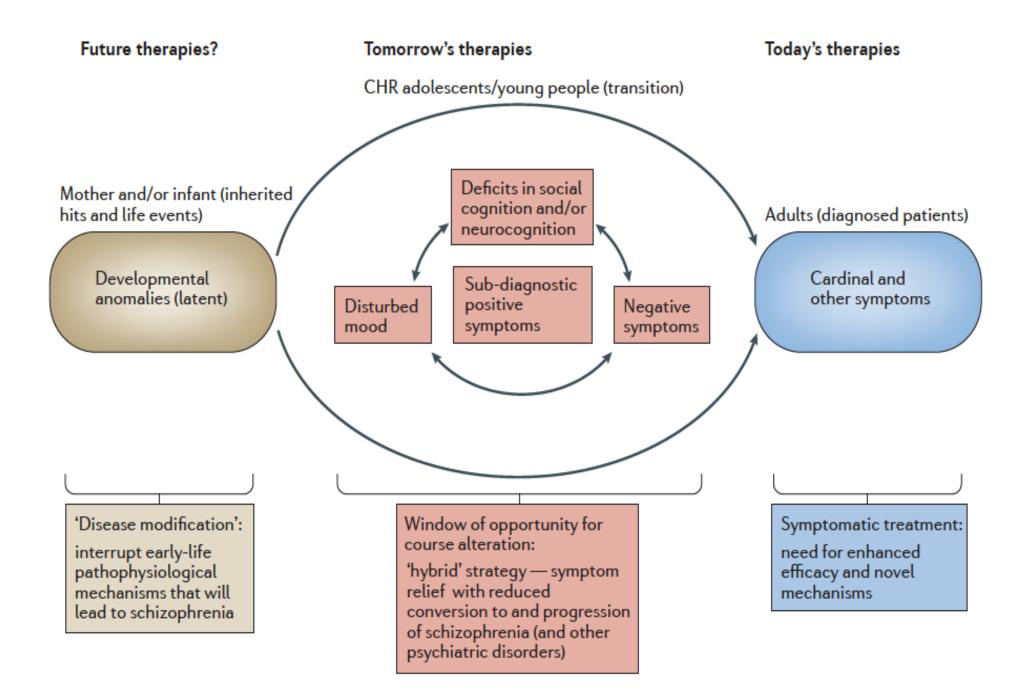
Psychotic depression

Atypical psychotic disorders

Bipolar disorder


Schizoaffective disorder

SCHIZOPHRENIA


Revista de Psiquiatría y Salud Mental

www.elsevier.es/saludmental

Psiquiatría

v Salud

Possible pharmacological targets in schizophrenia

Dopamine D_2 antagonists Dopamine D_2 partial agonists Dopamine D_3 antagonists/agonists Serotonin 5-HT_{2C} agonists Muscarinic M₁ agonists Glutamate modulators Cannabinoid CB₁ antagonists Neurokinin NK₃ antagonists Neurotensin NT1 agonists PDE10A inhibitors Glycine transport inhibitors mGluR2 positive modulators

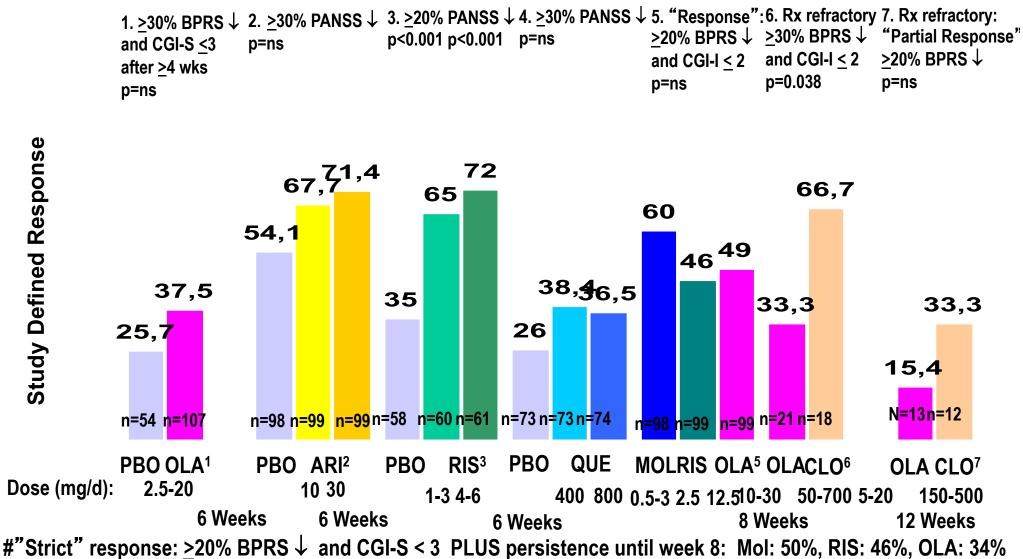
POSITIVE SYMPTOMS

Delusions Hallucinations Thought disorder

NEGATIVE SYMPTOMS Blunted affect Anhedonia Avolition Alogia Asociality

Dopamine D_1 agonists Dopamine D_3 antagonists/antagonists Serotonin 5-HT_{2A} antagonists Serotonin 5-HT_{1A} partial agonists NMDA modulators Glycine transport inhibitors Neurokinin NK₃ antagonists Neurosteroids

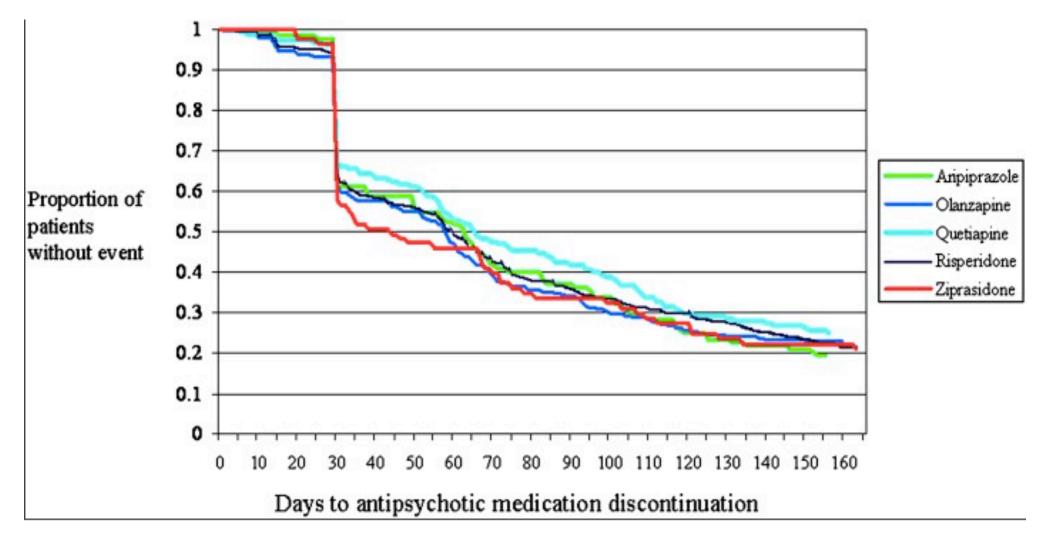
COGNITIVE SYMPTOMS


Working memory Attention/Vigilance Verbal learning/memory Visual learning/memory Reasoning/Problem solving Social cognition

Dopamine D₁ agonists Dopamine D₃ agonists COMT inhibitors Serotonin 5-HT_{2A} antagonists Serotonin 5-HT_{1A} partial agonists Serotonin 5-HT₄ partial agonists Serotonin 5-HT₆ antagonists Cholinesterase inhibitors Muscarinic M₁ agonists Muscarinic M₄ agonists Nicotinic α_7 agonists and modulators Nicotinic $\alpha_4\beta_2$ agonists NMDA positive modulators AMPA positive modulators Glycine transport inhibitors mGluR2/3 positive modulators GABA_A positive modulators Neurokinin NK3 antagonists COX2 inhibitors

The drug discovery pipeline in schizophrenia JA Gray and BL Roth

Molecular Psychiatry (2007) 12, 904-922


"Response" Rates in Schizophrenia: NNTs¹⁻⁴= 5-10

* "Full" response: $\geq 20\%$ BPRS \downarrow and CGI-S < 3 or BPRS ≤ 35 : OLA: 7.7%, CLO: 0%

1. Kryzhanovskaya et al. J Am Acad Child Adolesc Psychiatry. 2009 Jan;48(1):60-70; 2. Findling RL et al. Am J Psychiatry. 2008 Nov;165(11):1432-41; 3. Haas M et al. Poster at 160th meeting of American Psychiatric Assoc. 2007; 4. Findling RL et al. Poster at AACAP Meeting 2008; 5. Sikich L et al. Am J Psychiatry 2008;165:1420-31; 6. Kumra S et al. Biol Psychiatry 2008 7. Shaw P et al. Arch Gen Psychiatry 2006

Comparative Effectiveness of Second-Generation Antipsychotic Medications in Early-Onset Schizophrenia

Olfson et al., 2012

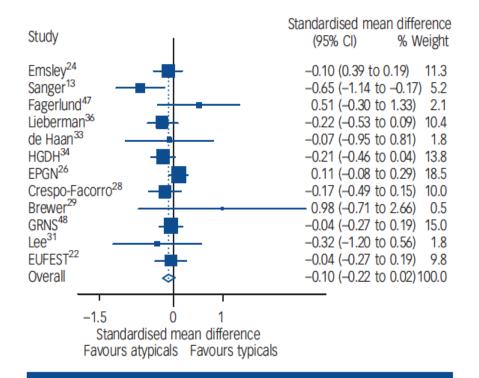
REVIEW

Efficacy and safety of second-generation antipsychotics in children and adolescents with psychotic and bipolar spectrum disorders: Comprehensive review of prospective head-to-head and placebo-controlled comparisons

David Fraguas ^{a,b}, Christoph U. Correll ^c, Jessica Merchán-Naranjo ^b, Marta Rapado-Castro ^b, Mara Parellada ^b, Carmen Moreno ^b, Celso Arango ^{b,*}

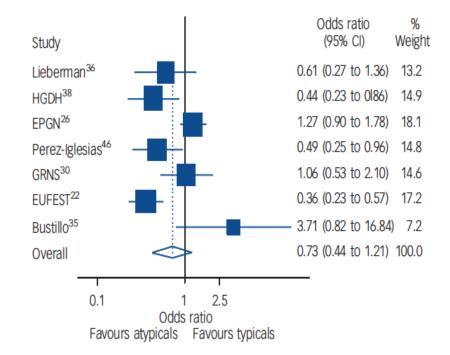
•34 studies (2719 children and adolescents)

•Head to head and placebo-controlled


•Clozapine better on refractory schizophrenia

•No other differences in efficacy between SGA

Review article


Efficacy of atypical *v.* typical antipsychotics in the treatment of early psychosis: meta-analysis

Nicolas A. Crossley, Miguel Constante, Philip McGuire and Paddy Power

Fig. 3 Comparisons of symptoms scales at short term (around 3 months) between the two groups.

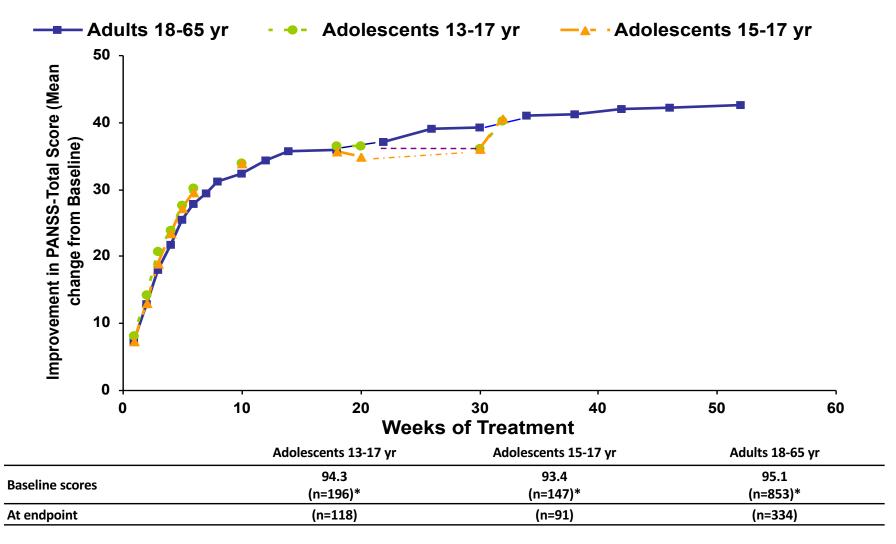
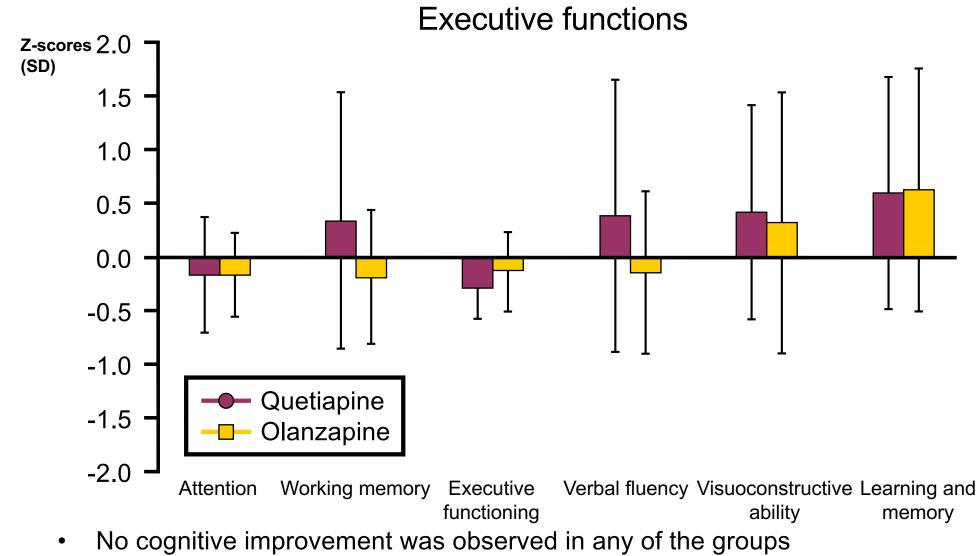

Effect sizes were standardised using Hedges' g and pooled using a random-effects model. Non-significant difference favouring atypicals shown (P=0.12). Heterogeneity $\chi^2 = 15.3$ (d.f. = 11) P = 0.17, $I^2 = 28\%$. EPGN, Early Psychosis Global Network; GRNS, German Research Network on Schizophrenia; EUFEST, European First-Episode Schizophrenia Trial.

Fig. 2 Comparison of discontinuation rates among participants receiving first- *v*. second-generation antipsychotics.

P = 0.22. Heterogeneity $\chi^2 = 28.55$ (d.f. = 6) P < 0.001, $I^2 = 79.0\%$. EPGN, Early Psychosis Global Network; GRNS, German Research Network on Schizophrenia; EUFEST, European First-Episode Schizophrenia Trial. For clarity purposes, the first author of the first published paper is used in Table DS1 in cases where more than one article reporting outcomes of the study has been included.

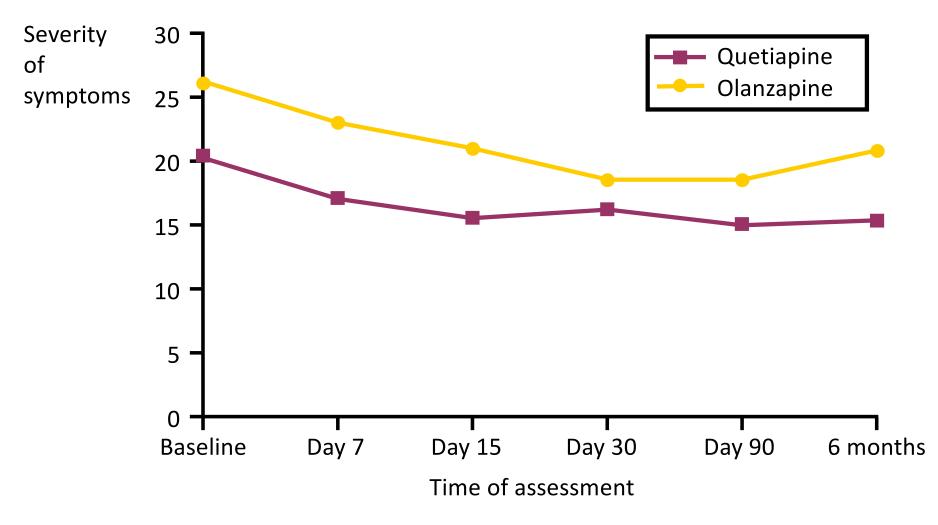
Long-Term Symptom Improvement is Similar in Adolescents and Adults (OC)


* Including only patients who received aripiprazole and had both a baseline and at least one post-baseline PANSS Total Score evaluation

Antecedents of Treatment Response Over Time in Early-Episode Psychosis

		Wk 4				Month 6			
Trajectory		OR 95.0% CI (Range)		Range)	P OR		95.0% C.I (Р	
Good response	Being male	1.34	0.78-	2.28	.29	0.72	0.42-1.25		.24
r	Age at onset	1.14	4 0.90-1.45		.28	1.12	0.86-1.46		.39
	Good premorbid functioning	1.24	.24 0.76-2.03		.38	2.01	1.18-3.43		.01
	Not having schizophrenia	2.04	04 1.26-3.30		.00	2.11	1.24-3.60		.01
	Cognitive functioning	1.42	2 1.01-1.98		.04	0.79	0.55-1.12		.18
	Constant	0.00			.00	0.00			.00
		R^2	Sensitivity	Specificity	Accuracy	R ²	Sensitivity	Specificity	Accuracy
	Model fit indices	0.09	0.81	0.33	80.68	0.22	0.84	0.48	82.70
	1	OR	95.0% C	I (Range)	Р	OR	95.0% C	I (Range)	Р
Poor response	Being male	0.56	0.28-1.13		0.11	1.19	0.57-2.47		0.65
	Age at onset	0.70	0.50-0.98		0.04	0.70	0.49-1.00		0.05
L	Good premorbid functioning	0.89	0.45-1.73		0.72	0.69	0.35-1.36		0.28
	Not having schizophrenia	0.58	0.29-1.16		0.12	1.31	0.66-2.58		0.44
	Cognitive functioning	0.53	0.34-	0.82	0.00	0.80	0.52-	-1.22	0.30
	Constant	0.00			0.00	0.00			0.00
		<i>R</i> ²	Sensitivity	Specificity	Accuracy	R ²	Sensitivity	Specificity	Accuracy
	Model fit indices	0.62	0.91	0.77	89.00	0.47	0.90	0.60	87.32

Levine and Rabinowitz, 2010


Cognition: Tasks grouped in cognitive domains

• No differences between groups

Robles et al 2011

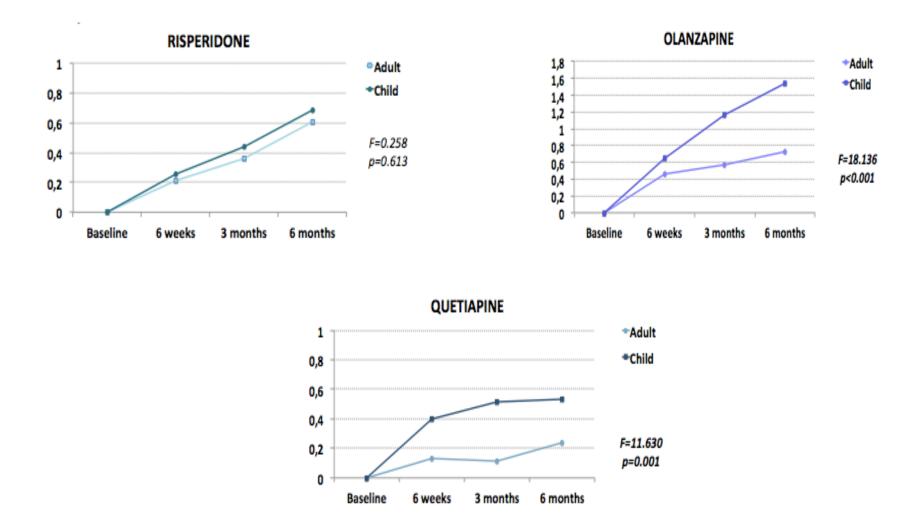
Negative symptom reduction with SGA

Significant symptom reduction from baseline to end of treatment only for the quetiapine group: olanzapine 16.5% (W=-2.533, p=0.833); quetiapine 25.6% (W=-2.533, p=0.011)
 Arango et al 2009

Second-Generation Antipsychotic Use in Children and Adolescents: A Six-Month Prospective Cohort Study in Drug-Naïve Patients

Celso Arango, MD, PhD, Miriam Giráldez, PharmD, PhD, Jessica Merchán-Naranjo, MSc, Inmaculada Baeza, MD, PhD, Josefina Castro-Fornieles, MD, PhD, Jose-Angel Alda, MD, Carmen Martínez-Cantarero, MD, PhD, Carmen Moreno, MD, PhD, Pilar de Andrés, MSc, Cristina Cuerda, MD, PhD, Elena de la Serna, PhD, Christoph U. Correll, MD, David Fraguas, MD, PhD, Mara Parellada, MD, PhD

CG Clinical Guidance


- Olanzapine, quetiapine, and risperidone significantly increase body weight in the first 6 months after initiation of treatment in children and adolescents.
- After the first 3 months, patients on olanzapine and risperidone continue to gain weight through month 6.
- No relationship was detected between administered olanzapine dose and increase in BMI z score. This is in contrast to the relationship between higher risperidone doses and greater BMI increase.
- At 6 months of treatment, olanzapine significantly increases almost all lipid parameters.
- Patients under 12 years of age on risperidone may be at higher risk for glucose intolerance than older patients.
- Close screening and monitoring is necessary when prescribing risperidone, quetiapine, and olanzapine, as many of the side effects continue to develop during the first 6 months of treatment.

Weight and metabolic changes after 3-m treatment with SGA

	Bipolar Disorder (N=31)	Psychotic Disorder (N=29)	Non-psychotic Disorders (N=30)
	% change	% change	% change
Weight kg	6.6 (5.8)	5.9 (4.3)	4.1 (4.0)
BMI	2.3 (2.1)	0.5 (6.8)	-0.2 (6.4)
BMI z-score	0.6 (0.6)	0.5 (0.4)	0.6 (0.7)
SPB mm Hg	-3.1 (20.3)	-2.0 (20.1)	3.4 (16.7)
DPB mm Hg	-0.4 (12.6)	3.9 (23.3)	-0.4 (14.1)
Glucose mg/dl	2.80 (16.0)	2.30 (26.2)	3.4 (10.2)
Total-chol mg/dl	10.1 (22.5)	9.7 (19.4)	2.12 (22.3)
HDL-chol mg/dl	-0.5 (8.6)	3.04 (11.8)	1.01 (8.2)
LDL-cholmg/dl	9.1 (17.8)	4.5 (15.8)	2.4 (24.6)
TG mg/dl	5.8 (40.9)	12.1 (41.2)	-0.9 (47.9)
TSH mU/L	1.63 (11.4)	0.1 (2.6)	0.1 (1.5)
Free T4 ng/d	-0.6 (1.6)	-0.5 (1.1)	-0.2 (0.4)
Non-significant	differences betwe	een groups	Moropo et al 2010

Moreno et al, 2010

Increase in BMI z-scores: differences between paediatric and adult patients

Diaz-Caneja et al., in preparation

Original Investigation | META-ANALYSIS

Type 2 Diabetes Mellitus in Youth Exposed to Antipsychotics A Systematic Review and Meta-analysis

Britta Galling, MD; Alexandra Roldán, MD; René E. Nielsen, MD, PhD; Jimmi Nielsen, MD, PhD; Tobias Gerhard, PhD; Maren Carbon, MD; Brendon Stubbs, PhD; Davy Vancampfort, PhD; Marc De Hert, MD, PhD; Mark Olfson, MD, MPH; Kai G. Kahl, MD; Andres Martin, MD; Jeff J. Guo, MD; Hsien-Yuan Lane, MD, PhD; Fung-Chang Sung, PhD, MPH; Chun-Hui Liao, MD; Celso Arango, MD; Christoph U. Correll, MD

Favors More Favors More Statistics for Each Study No. With Diabetes/Total No. T2DM in T2DM in Healthy Antipsychotic-Treated Relative Rate Ratio Antipsychotic-Healthy Controls Youth Weight Source (95% CI) Z-Value P Value Exposed Youth Controls Arango et al,⁴⁶ 2014 0.123 (0.005-3.030) -1.281.200 1/136 0/6 2.69 6-E McIntyre and Jerrell, 48 2008 1.560 (1.185-2.055) 3.165 .002 125/36473 85/38700 -16.42 Morrato et al.⁵⁰ 2010 1.812 (1.260-2.605) 3.207 .001 48/2648 74/7397 15.97 Sohn et al.55 2015 2.574 (1.568-4.228) 3.736 <.001 27/8161 37/28792 15.13 Andrade et al.³⁴ 2011 4.249 (2.144-8.421) 4.145 <.001 12/3710 26/34156 13.72 Liao et al.52 2011 (SGA) 7/17734 5.774 (1.690-19.725) 2.797 .005 4/1755 9.56 \rightarrow Liao et al.52 2011 (FGA) 10/41735 10.04 5.889 (1.847-18.775) 2.997 .003 4/2835 Enger et al.47 2013 265/294564 6.412 (4.934-8.331) 13.904 <.001 71/12309 16.48 Total 3.019 (1.703-5.351) 3.783 <.001 10 0.1 0.2 0.5 1 2 5

Rate Ratio (95% CI)

Figure 2. Forest Plot of Incidence Rate Ratio for T2DM per Patient-Years in Antipsychotic-Exposed Youth vs Healthy Controls

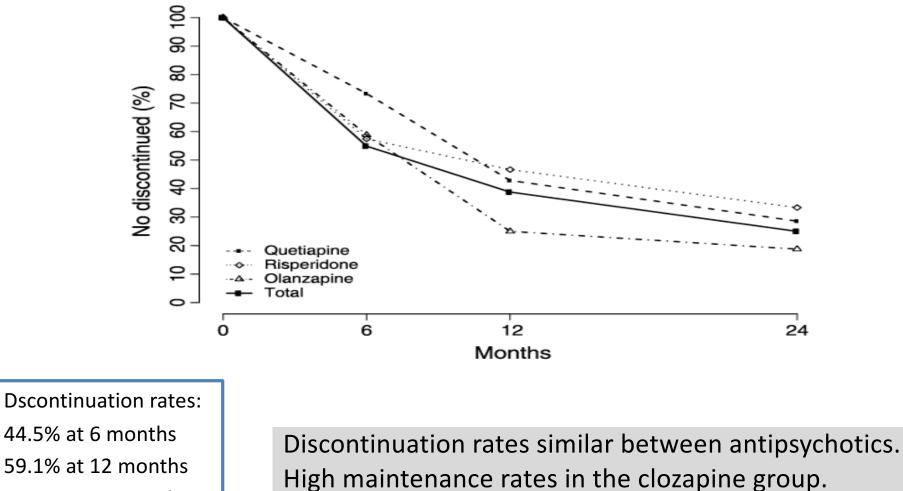
FGA indicates first-generation antipsychotic; SGA, second-generation antipsychotic; and T2DM, type 2 diabetes mellitus.

Extrapiramidal effects at baseline and after 1-year of antipsychotic treatment

					·	patient =265)	S			
	Baseline (N=265)		3- month (N=210)		6- month (N=160)		1-year (N=110)		Baseline- Follow-upa	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	n	
Total Dyskinesia Score	3	4.5	4.4	5.0	4.8	5.0	4.3	5.1 a	<.001	
Total Parkinsonism Score	2.0	3.4	4.0	5.1	3.5	4.6	3.1	4.4 a	<.001	
Total Cognition Score	3.9	3.1	3.4	2.9	3.3	3.0	3.3	3.0 a	<.001	
Total Akathysia Score	.7	2.7	.5	2.0	4	1.4	-5	1.5	.6	
						e patier = 134)	nts			
	Base	ine	3- month		6- month		1-year		Baseline-	
	(N=134)		(N=126)		(N=101)		(N=75)		Follow-upa	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD		
Total Dyskinesia Score	2.7	3.4	4.6	5.8	4.8	5.1	5.5	5.1	<.001	
Total Dyskinesia Score Total Parkinsonism Score	2.7 1.6	3.4 2.9	4.6 3.7	5.8 4.8	4.8 4.0	5.1 4.6	5.5 3.2	5.1 3.9	<.001 <.001	
ž – – – – – – – – – – – – – – – – – – –										

Tardive Dyskinesia

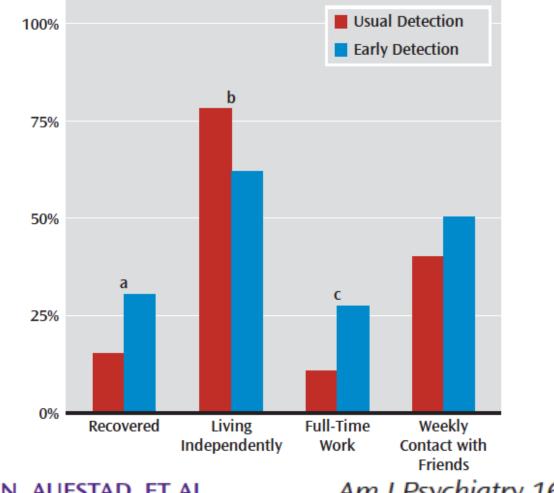
- ✓ 5.8%
- ✓ less frequent in older subjects
- Increased risk with psychotic symptoms and longer exposure to antipsychotics


Garcia-Amador et al, 2016

Journal of Clinical Psychopharmacology • Volume 33, Number 4, August 2013

Twenty-Four Months of Antipsychotic Treatment in Children and Adolescents With First Psychotic Episode

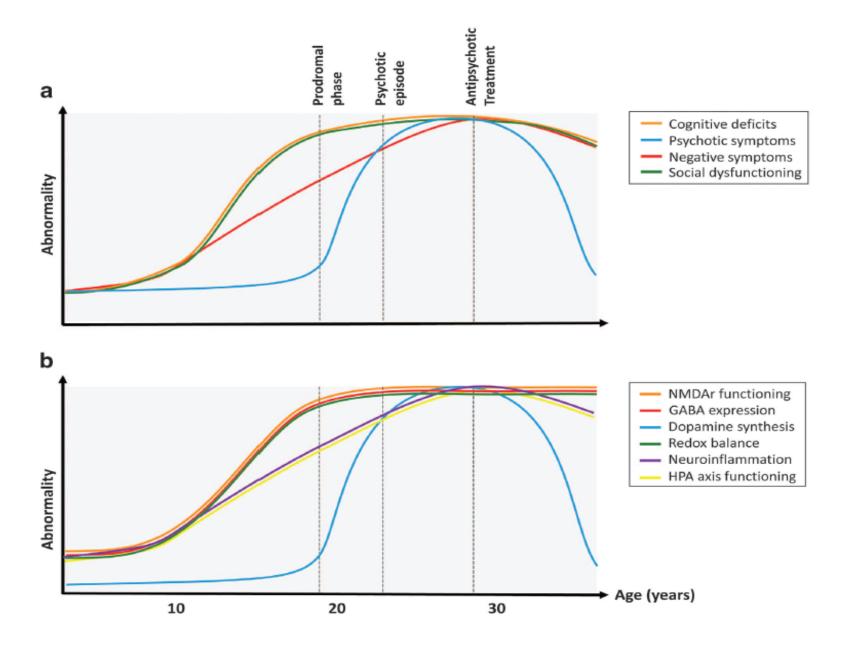
Discontinuation and Tolerability


Ana Noguera, MD,*†‡§ Patricia Ballesta, PhD,*†‡§ Immaculada Baeza, MD, PhD,*†‡§ Celso Arango, MD,§// Elena de la Serna, PhD,// Ana González-Pinto, MD, PhD,§¶** Mara Parellada, MD, PhD,§// Montserrat Graell, MD,†† Carmen Moreno, MD, PhD,§// Soraya Otero, MD, PhD,§‡‡‡ and Josefina Castro-Fornieles, MD, PhD*†‡§

70.9% at 24 months.

Fostering mental health literacy and helpseeking at the onset of the disorder

Long-term follow-up of the TIPS early detection in psychosis study: effects on 10-year outcome.

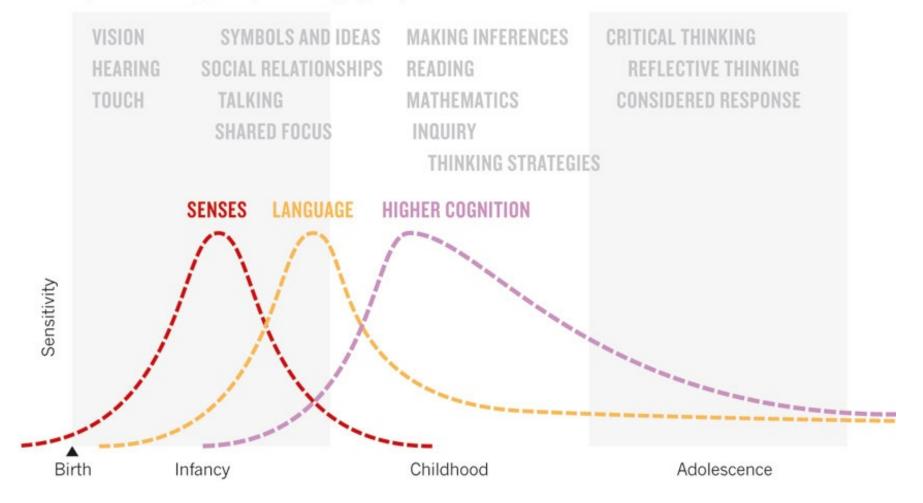

HEGELSTAD, LARSEN, AUESTAD, ET AL.

Am J Psychiatry 169:4, April 2012

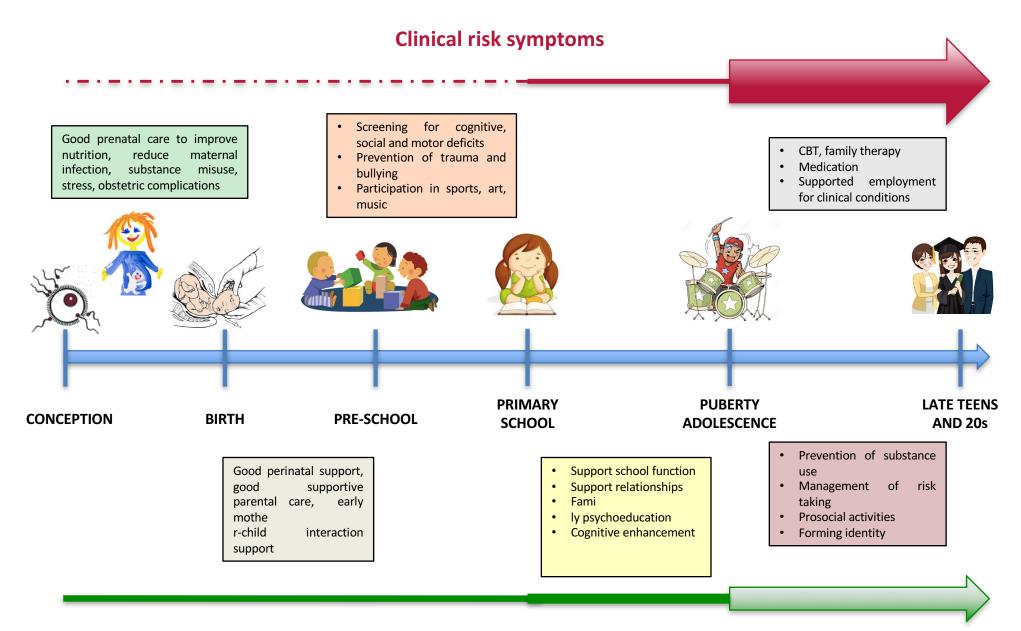
Steps to overcome barriers for pharma development in psychosis

- Development of non-dopaminergic strategies targeting symptomatic dimensions other than positive symptoms.
- Targeting of other mechanisms involved in the pathophysiology of schizophrenia (e.g. inflammation, immunity)
- Repurposing of strategies available for other conditions.
- Study of more homogeneous subgroups
- Translational approaches
- Strategies aimed at modifying neurodevelopmental trajectories and primary and secondary preventative strategies

Neurodevelopmental basis of drug development


IE Sommer et al

npj Schizophrenia (2016) 16003


Critical periods for intervention

OPEN AND SHUT

The human brain's sensitivity to learning seems to crest in three broad waves. The critical periods for cortical regions devoted to vision and other senses (red) open in infancy, then close tightly. Those for language (yellow) and higher cognition (purple) open later, and never close entirely. The successive waves allow a child to acquire increasingly complex skills (grey text).

Developmentally sensitive interventions

Familial risk for psychosis

Adapted from Seidman and Nortendoft. Schiz Bulletin, 2015

The other effects of antipsychotics

International Journal of Neuropsychopharmacology (2013), 16, 121–135. © CINP 2011 doi:10.1017/S1461145711001775

Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation

Karina S. MacDowell^{1,2,3}, Borja García-Bueno^{1,2,3}, José L. M. Madrigal^{1,2,3}, Mara Parellada^{2,4}, Celso Arango^{2,4}, Juan A. Micó^{2,5} and Juan C. Leza^{1,2,3}

¹ Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain

² Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)

³ Instituto de Investigación Sanitaria Hospital 12 de Octubre (I+12), Madrid, Spain

⁴ Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón and Department of Psychiatry,

Faculty of Medicine, Complutense University, Madrid, Spain

⁵ Department of Pharmacology, Faculty of Medicine, University of Cádiz, Spain

Preventive interventions on adolescent oxidative stress

Juvenile Antioxidant Treatment Prevents Adult Deficits in a Developmental Model of Schizophrenia

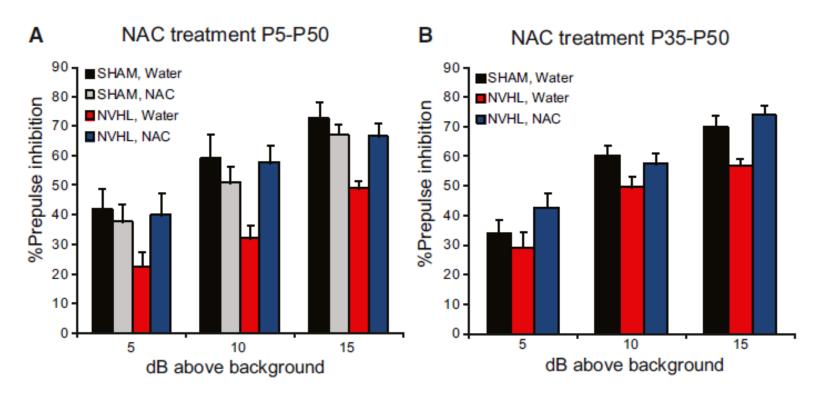
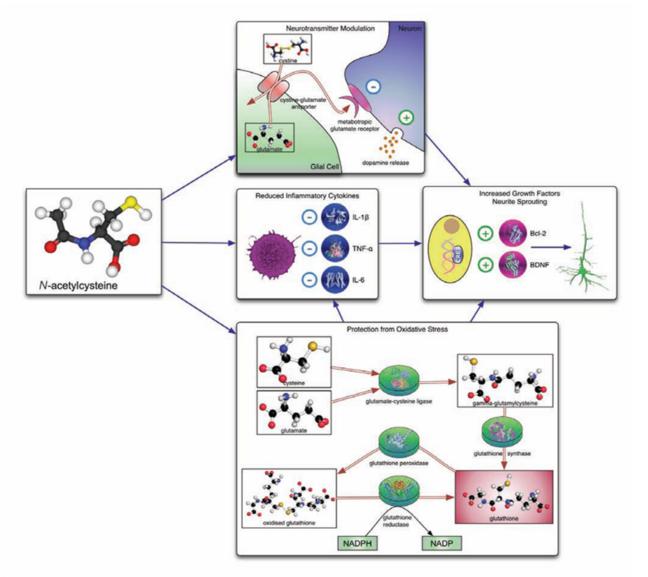



Figure 8. Prepulse Inhibition Deficits Were Rescued with Antioxidant Treatment

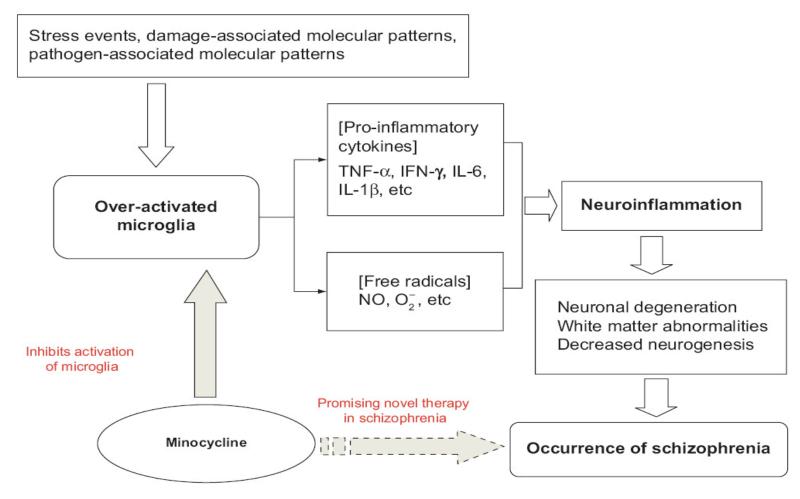
Neuron 83, 1073-1084, September 3, 2014

Mechanisms of action of N – Acetylcysteine (NAC)

- Substrate for GSH synthesis
- Scavenge oxidants directly
- Anti-inflammatory properties
- Modulate neurotransmitter pathways (DA and glutamate)

Effect of 48-week N – Acetylcysteine treatment on grey matter loss and oxidative metabolism in early onset first episode psychosis: a randomized, double-blind, placebocontrolled clinical trial

Aim: To evaluate the effect of 48-week of NAC treatment on grey matter change (MRI at baseline and after a year)


Secondary Objectives:

- 1. Markers of oxidative status (TAOS, NOx, GSH/GSSG, antioxidants).
- 2. Psychopathology (PANSS, HAM-D, YMRS) and psychosocial functioning (C-GAS, WHO-DAS).
- 3. Effect on antipsychotic dosage and side effects.

Potential role of minocycline

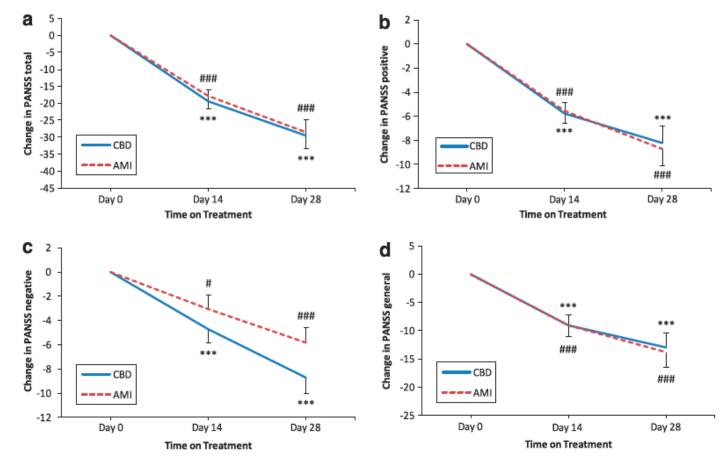


Figure I Microglia hypothesis of schizophrenia.

Notes: Stress events, damage-associated molecular patterns and pathogen-associated molecular patterns activate microglia in the central nervous system. Over-activated microglia release pro-inflammatory cytokines and free radicals. These mediators cause neuronal degeneration, white matter abnormalities and decreased neurogenesis, which eventually lead to the occurrence of schizophrenia. The appropriate control of microglial activation may thus be a promising therapeutic target for schizophrenia. Minocycline is a potent inhibitor of microglial activation and has a neuroprotective capacity. These properties of minocycline may be useful for the treatment in schizophrenia. **Abbreviations:** IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; NO, nitric oxide; O₂⁻, superoxide.

Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia

FM Leweke^{1,2}, D Piomelli^{3,4}, F Pahlisch^{1,3}, D Muhl^{2,3}, CW Gerth², C Hoyer^{1,2}, J Klosterkötter², M Hellmich⁵ and D Koethe^{1,2}

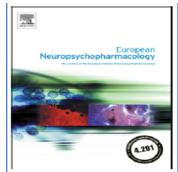
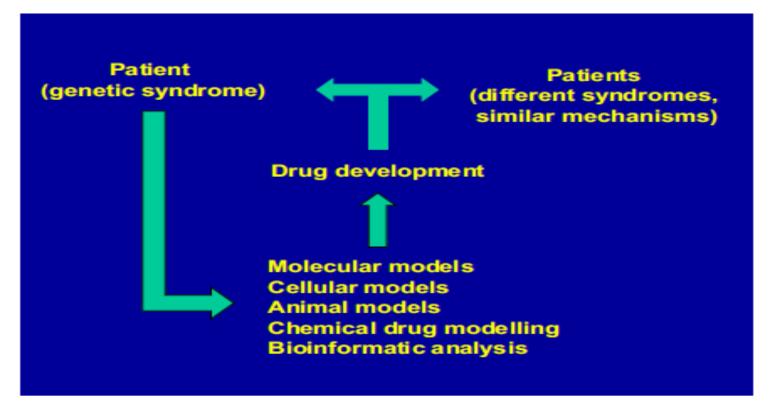


Figure 2 Changes from baseline in Positive and Negative Symptoms Scale (PANSS) scores determined using mixed effects repeated measures model analysis (adjusted for baseline). (a) PANSS total score. (b) PANSS-positive score. (c) PANSS-negative score. (d) PANSS general score. Data show predicted means and s.e. at each weak. Statistical significance is calculated between groups ($^{\dagger}P \leq 0.05$, $^{\dagger\dagger}P \leq 0.01$ and $^{\dagger\dagger\dagger}P \leq 0.001$) and vs baseline (that is, 0; *CBD, #AMI; ***/### $P \leq 0.05$, **/## $P \leq 0.01$, */# $P \leq 0.001$).


Transl Psychiatry (2012)

REVIEW

Unmet needs in paediatric psychopharmacology: Present scenario and future perspectives

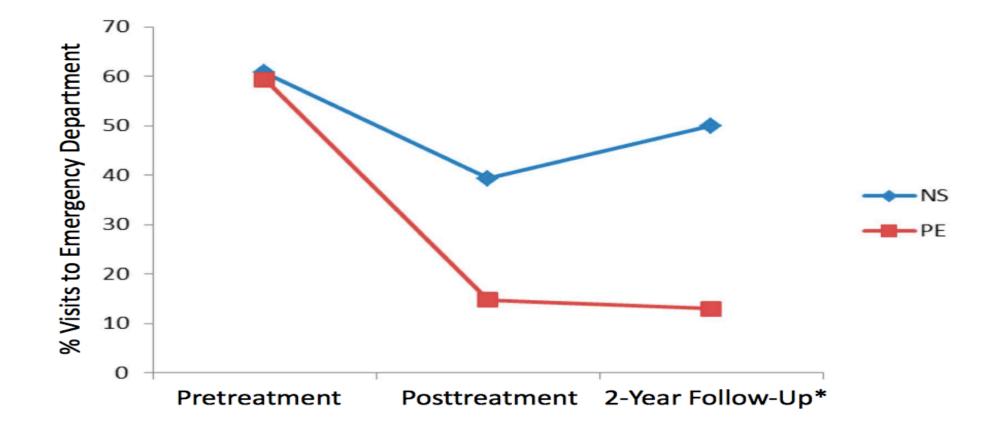
Defining more homogeneous subgroups: Study of patients with genetic syndromes

Persico, Arango, et al., European Neuropsychopharmacology (2015)

Mental disorders of known aetiology and precision medicine in psychiatry: a promising but neglected alliance

D. Fraguas¹*, C. M. Díaz-Caneja¹, M. W. State², M. C. O'Donovan³, R. E. Gur⁴ and C. Arango¹

- Schizophrenia in genetic syndromes such as 22q11DS might constitute a relatively homogeneous subgroup based on shared aetiological factors.
- Prevalence of 22q11DS in patients with schizophrenia is only 0.3%. Although models based on 22q11DS might have a limited direct effect on the whole population of subjects with schizophrenia, they still provide an appropriate scenario for testing specific treatment options and identifying novel therapeutic targets.

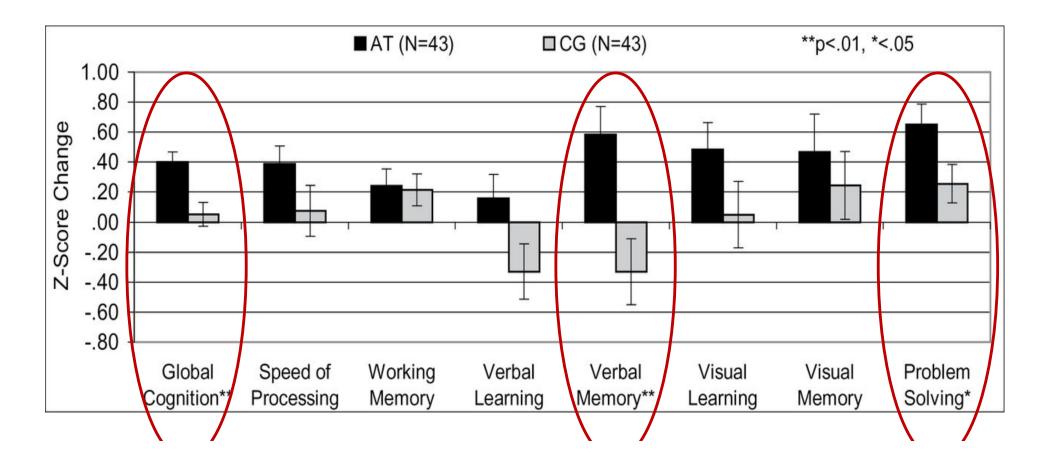

Intervention for Adolescents With Early-Onset Psychosis and Their Families: A Randomized Controlled Trial

Ana Calvo, PhD, Miguel Moreno, MD, PhD, Ana Ruiz-Sancho, MD, Marta Rapado-Castro, PhD, Carmen Moreno, MD, PhD, Teresa Sánchez-Gutiérrez, MSc, Celso Arango, MD, PhD, María Mayoral, PhD

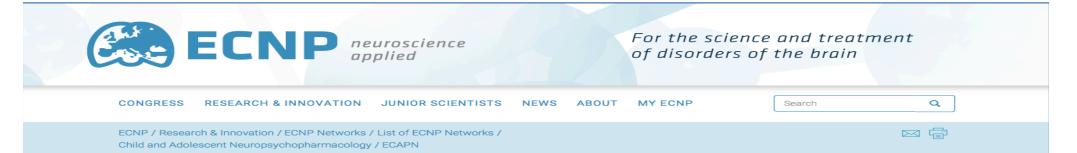
	Pretreatment		Posttreatment			
	Mean	SD	Mean	SD	p Value	Difference Between PE and NS (p Value)
PANSS Positive						.163 ^b
PE	14.77	8.22	10.72	14.33	.022°,*	
NS	16.92	9.10	11.77	3.93	.006°,*	
PANSS Negative						.039 ^{b,*}
PE	16.55	7.27	12.84	7.87	.013°,*	
NS	17.03	7.42	15.81	6.37	.254°	
PANSS Total						.264
PE	61.85	23.37	50.29	19.28	.026 °,*	
NS	69.00	27.71	55.35	17.39	.009°,*,***	
GAF						.163 ^b
PE	64.37	18.79	73.92	14.33	.039°,*	
NS	58.46	19.02	66.31	15.23	.034°,*	

JOURNAL OF THE AMERICAN ACADEMY OF CHILD & ADOLESCENT PSYCHIATRY VOLUME 53 NUMBER 6 JUNE 2014

Psychoeducational Group Intervention for Adolescents With Psychosis and Their Families: A Two-Year Follow-Up



Calvo et al, JAACAP, 2016


Neuroplasticity-Based Auditory Training Via Laptop Computer Improves Cognition in Young Individuals With Recent Onset Schizophrenia

Melissa Fisher^{1,2}, Rachel Loewy¹, Cameron Carter³, Ashley Lee¹, J. Daniel Ragland³, Tara Niendam³, Danielle Schlosser¹, Lien Pham³, Tara Miskovich³, and Sophia Vinogradov^{*,1,2}

86 subjects with recent onset schizophrenia (mean age of 21 years). 40 hours of training or 40 hours of commercial computer games over 8 weeks.

SCIENCE	PEAN MEDICINES AGENCY MEDICINES HEALTH gency logo with link to homepage	Site-wide search GO > Advanced document search
Home Find medicine Hun	nan regulatory Veterinary regulatory Committees News & events Partners & networks About us	
EU partners	▶ Home ▶ Partners & Networks ▶ Networks ▶ Enpr-EMA	
Regulators outside the EU	European Network of Paediatric Research at the European Medicines Agency (Enpr-EMA)	🖂 Email 🚔 Print 🔞 Help 👩 Share
Patients and consumers		
Healthcare professionals	Enprie EMA NETWORK	Related content Paediatric medicines: Overview
Academia Pharmaceutical industry	Clinical studies in children. Enpr-EMA's main objective is to facilitate studies in order to increase availability of medicinal products authorised for use in the paediatric population, by:	 Paediatric Committee Paediatric medicine development
International organisations		External links
▼ Networks	 fostering high-quality, ethical research on the quality, safety and <u>efficacy</u> of medicines for use in children; helping with the recruitment of patients for <u>clinical trials</u>; 	▶ Enpr-EMA Network Database [©]
ENCePP	enabling collaboration between networks and stakeholders;	Publications
▼ Enpr-EMA	 avoiding unnecessary duplication of studies; building up scientific and administrative competence at a European level; promoting European Commission framework programme applications. 	 Successful private-public funding of paediatric medicines research: lessons from the EU programme to fund research into off-patent

ADHD

Anxiety Disorders

Bipolar Disorders

Child and Adolescent Neuropsychopharmacology >

- Members
- Roadmap
- Output

European Child and Adolescent Clinical Psychopharmacology Network (ECAPN)

The European Child & Adolescent Psychopharmacology Network (ECAPN) is a well-established network of clinical Centres of Child and Adolescent Psychiatry (currently 12), based on several EU countries, all of whom are experts in paediatric psychopharmacology.

The ECAPN has been developed as an initiative of the European Child & Adolescent Psychopharmacology Network; its' aims include the identification of unmet needs in child and adolescent psychopharmacology, conducting collaborative scientific studies and clinical trials, and the development of strategies to improve state-of-the-art prescribing of medication to children and adolescents with psychiatric disorders in clinical practice.

The European Network of Paediatric Research at the European Medicines Agency (Enpr-EMA) is a network of research networks, investigators and centres with recognised expertise in performing clinical studies in children, supported by the European Medicine Agency, Enpr-EMA's main objective is to facilitate studies in order to increase availability of

Conclusions

- Psychotic disorders often start previous to adulthood
- Development shapes clinical presentation and biological correlates as well as interventions
- Therapeutic windows
- Detection and early-intervention are key to improve prognosis

cmoreno@hggm.es

Contents lists available at SciVerse ScienceDirect

Schizophrenia Research

journal homepage: www.elsevier.com/locate/schres

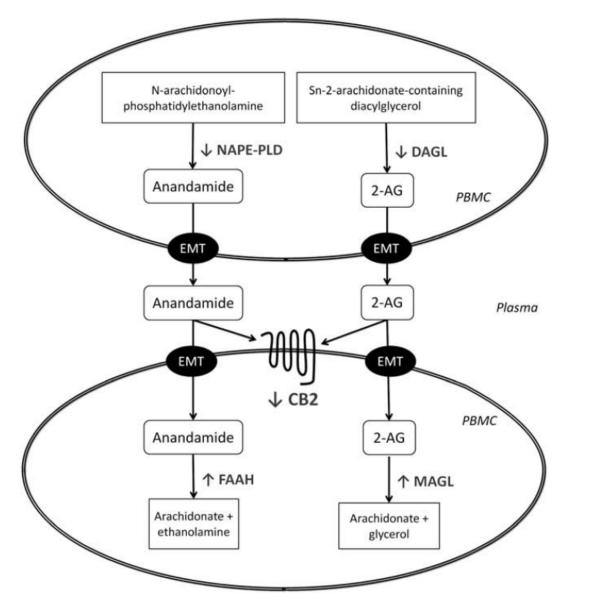
Cognitive reserve as a predictor of two year neuropsychological performance in early onset first-episode schizophrenia

Introduction: The concept of cognitive reserve (CR) has been defined as individual differences in the efficient utilization of brain networks which allow some people to cope better than others with brain pathology. CR has been developed mainly in the field of aging and dementia after it was observed that there appears to be no direct relationship between the degree of brain pathology and the severity of clinical manifestations of this damage. The present study applies the concept of CR to a sample of children and adolescents with a first episode of schizophrenia, aiming to assess the possible influence of CR on neuropsychological performance after two year follow-up, controlling for the influence of clinical psychopathology.

Methods: 35 patients meeting DSM-IV criteria for schizophrenia or schizoaffective disorder (SSD) and 98 healthy controls (HC) matched for age and gender were included. CR was assessed at baseline, taking into account premorbid IQ, educational–occupational level and leisure activities. Clinical and neuropsychological assessments were completed by all patients at two year follow-up.

Results: The CR proxy was able to predict working memory and attention at two year follow-up. Verbal memory and cognitive flexibility were not predicted by any of the variables included in the regression model. The SSD group obtained lower scores than HC on CR. CR measures correctly classified 79.8% of the sample as being SSD or HC.

Conclusions: Lower scores on CR were observed in SSD than in HC and the CR measure correctly classified a high percentage of the sample into the two groups. CR may predict SSD performance on working memory and attention tasks.

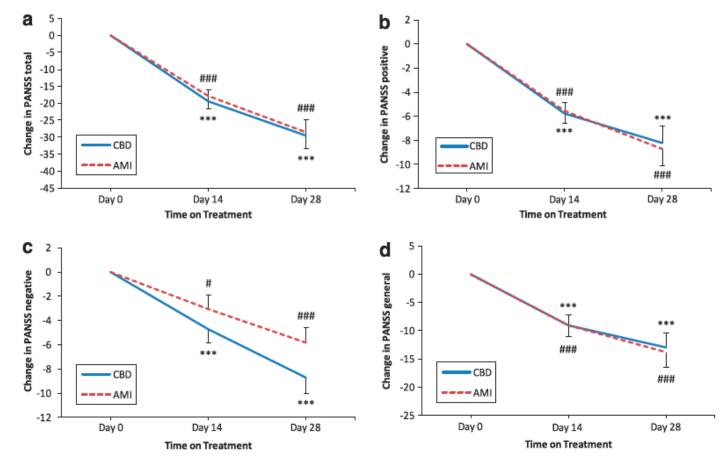

REVIEW

Efficacy and safety of second-generation antipsychotics in children and adolescents with psychotic and bipolar spectrum disorders: Comprehensive review of prospective head-to-head and placebo-controlled comparisons

www.elsevier.com/locate/euroneuro

Aumento de peso (número de estudios)								
Fármacos	Total estudios	Más aumento con el 1º	No diferencias significativas	Más aumento con el 2º				
CLZ vs OLZ	4	0	2	2				
OLZ vs RIS	13	7	6	0				
OLZ vs QTP	5	4	1	0				
OLZ vs ARP	1	1	0	0				
RIS vs ARP	1	0	1	0				
RIS vs QTP	5	0	5	0				
RIS vs CLZ	3	0	3	0				
QTP vs ARP	1	0	1	0				

Peripheral Endocannabinoid System Dysregulation in First-Episode Psychosis


 ↑ Higher expression in FEP than in healthy controls
 ↓ Lower expression in FEP than in healthy controls

M Bioque et al

Neuropsychopharmacology (2013) 38, 2568–2577

Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia

FM Leweke^{1,2}, D Piomelli^{3,4}, F Pahlisch^{1,3}, D Muhl^{2,3}, CW Gerth², C Hoyer^{1,2}, J Klosterkötter², M Hellmich⁵ and D Koethe^{1,2}

Figure 2 Changes from baseline in Positive and Negative Symptoms Scale (PANSS) scores determined using mixed effects repeated measures model analysis (adjusted for baseline). (a) PANSS total score. (b) PANSS-positive score. (c) PANSS-negative score. (d) PANSS general score. Data show predicted means and s.e. at each weak. Statistical significance is calculated between groups ($^{\dagger}P \leq 0.05$, $^{\dagger\dagger}P \leq 0.01$ and $^{\dagger\dagger\dagger}P \leq 0.001$) and vs baseline (that is, 0; *CBD, #AMI; ***/### $P \leq 0.05$, **/## $P \leq 0.01$, */# $P \leq 0.001$).

Transl Psychiatry (2012)

Psychological Interventions for Psychosis: A Meta-Analysis of Comparative Outcome Studies

TABLE 3. Effect Sizes for Psychological Interventions Compared With Other Interventions Pooled^a (continued)

Comparison	Ν	Hedges' g	95% CI	Z-Score	Q	l ² (%)
Social skills training vs. all other therapies						
All symptoms						
All eligible studies	16	0.06	-0.17, 0.28	0.49	45.33*	66.91
Excluding high risk of bias (\geq 3)	10	0.19*	0.02, 0.36	2.15	8.72	0.00
Excluding low risk of bias (≥ 2)	4	0.34	-0.02, 0.70	1.87	5.47	45.13
Positive symptoms						
All eligible studies	7	0.09	-0.23, 0.41	0.56	16.44*	63.51
Excluding high risk of bias (\geq 3)	6	0.09	-0.26, 0.45	0.50	16.41*	69.53
Negative symptoms						
All eligible studies	9	0.27*	0.01, 0.53	2.01	17.33*	53.83
Excluding high risk of bias (\geq 3)	7	0.32*	0.07, 0.56	2.55	10.25	41.47
Excluding low risk of bias (≥ 2)	4	0.56*	0.31, 0.82	4.29	1.99	0.00

TURNER, VAN DER GAAG, KARYOTAKI, ET AL.

(Am J Psychiatry 2014; 171:523–538)

Explore this journal >

A controlled randomized treatment study: the effects of a cognitive remediation program on adolescents with early onset psychosis

T. Ueland, B. R. Rund

First published: 10 December 2003 Full publication history
DOI: 10.1046/j.0001-690X.2003.00239.x View/save citation

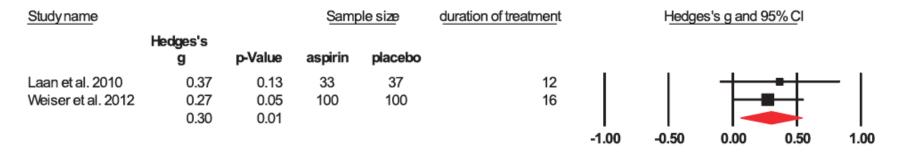
Objective: To examine if a cognitive remediation program could be a positive supplement to a psychoeducational treatment program for adolescents with early onset psychosis.

Method: Twenty-six subjects, randomly assigned to cognitive remediation (*n* = 14) or control group (*n* = 12), were assessed on cognitive, clinical, psychosocial and behavioural measures.

Results: No significant between-group differences in pre- and post-treatment scores were found. This may be due to low statistical power. Exploratory within-group analyses showed that the training group improved on five of the 10 cognitive, and three of the five functioning outcome measures, while the control group improved on three of the cognitive, and one functioning outcome variable.

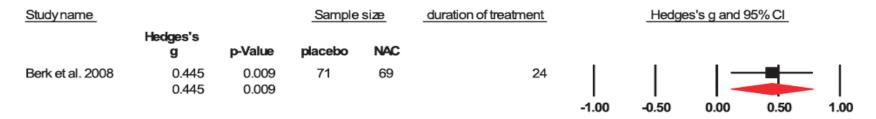
Conclusion: Based on these results we cannot conclude that the addition of this cognitive remediation program, yields better results than psychoeducation alone. However, within-group analyses indicate that on specific cognitive functions, as well as on some functioning outcome measures, the remediation program may have a positive effect.

ORIGINAL ARTICLE Role for neonatal D-serine signaling: prevention of physiological and behavioral deficits in adult *Pick1* knockout mice


J Nomura^{1,7}, H Jaaro-Peled¹, E Lewis², P Nuñez-Abades^{2,8}, F Huppe-Gourgues², T Cash-Padgett¹, F Emiliani¹, MA Kondo¹, A Furuya³, MA Landek-Salgado¹, Y Ayhan¹, A Kamiya¹, T Takumi^{3,4}, R Huganir⁵, M Pletnikov^{1,5}, P O'Donnell^{2,6,9} and A Sawa^{1,5}

NMDA glutamate receptors have key roles in brain development, function and dysfunction. Regulatory roles of D-serine in NMDA receptor-mediated synaptic plasticity have been reported. Nonetheless, it is unclear whether and how neonatal deficits in NMDA-receptor-mediated neurotransmission affect adult brain functions and behavior. Likewise, the role of D-serine during development remains elusive. Here we report behavioral and electrophysiological deficits associated with the frontal cortex in *Pick1* knockout mice, which show D-serine deficits in a neonatal- and forebrain-specific manner. The pathological manifestations observed in adult *Pick1* mice are rescued by transient neonatal supplementation of D-serine, but not by a similar treatment in adulthood. These results indicate a role for D-serine in neurodevelopment and provide novel insights on how we interpret data of psychiatric genetics, indicating the involvement of genes associated with D-serine synthesis and degradation, as well as how we consider animal models with neonatal application of NMDA receptor antagonists.

Molecular Psychiatry advance online publication, 26 May 2015; doi:10.1038/mp.2015.61


Antioxidants and antiinflammatory agents in schizophrenia

Aspirin augmentation

ES: 0.3, n = 270, 95% CI: 0.06–0.537

NAC augmentation

ES: 0.45, n = 140, 95% CI: 0.112– 0.779

Sommer et al., Schiz Bulletin 2014

Altering the course of schizophrenia: progress and perspectives

Mark J. Millan¹, Annie Andrieux², George Bartzokis³, Kristin Cadenhead⁴, Paola Dazzan⁵, Paolo Fusar-Poli⁵, Jürgen Gallinat⁶, Jay Giedd⁷, Dennis R. Grayson⁸, Markus Heinrichs⁹, René Kahn¹⁰, Marie-Odile Krebs¹¹, Marion Leboyer¹², David Lewis¹³, Oscar Marin¹⁴, Philippe Marin¹⁵, Andreas Meyer-Lindenberg¹⁶, Patrick McGorry¹⁷, Philip McGuire¹⁸, Michael J. Owen¹⁹, Paul Patterson²⁰, Akira Sawa²¹, Michael Spedding²², Peter Uhlhaas²⁰, Flora Vaccarino²³, Claes Wahlestedt²⁴ and Daniel Weinberger²⁵

Abstract | Despite a lack of recent progress in the treatment of schizophrenia, our understanding of its genetic and environmental causes has considerably improved, and their relationship to aberrant patterns of neurodevelopment has become clearer. This raises the possibility that 'disease-modifying' strategies could alter the course to — and of — this debilitating disorder, rather than simply alleviating symptoms. A promising window for course-altering intervention is around the time of the first episode of psychosis, especially in young people at risk of transition to schizophrenia. Indeed, studies performed in both individuals at risk of developing schizophrenia and rodent models for schizophrenia suggest that pre-diagnostic pharmacotherapy and psychosocial or cognitive-behavioural interventions can delay or moderate the emergence of psychosis. Of particular interest are 'hybrid' strategies that both relieve presenting symptoms and reduce the risk of transition to schizophrenia or another psychiatric disorder. This Review aims to provide a broad-based consideration of the challenges and opportunities inherent in efforts to alter the course of schizophrenia.

NATURE REVIEWS | DRUG DISCOVERY

Nature Reviews Drug Discovery 15, 485-515 (July 2016)

Article

Perinatal Choline Effects on Neonatal Pathophysiology Related to Later Schizophrenia Risk

Randal G. Ross, M.D.

Sharon K. Hunter, Ph.D.

Lizbeth McCarthy, M.D.

Julie Beuler, B.S.

Amanda K. Hutchison, M.D.

Brandie D. Wagner, Ph.D.

Sherry Leonard, Ph.D.

Karen E. Stevens, Ph.D.

Robert Freedman, M.D.

Objective: Deficient cerebral inhibition is a pathophysiological brain deficit related to poor sensory gating and attention in schizophrenia and other disorders. Cerebral inhibition develops perinatally, influenced by genetic and in utero factors. Amniotic choline activates fetal α 7-nicotinic acetylcholine receptors and facilitates development of cerebral inhibition. Increasing this activation may protect infants from future illness by promoting normal brain development. The authors investigated the effects of perinatal choline supplementation on the development of cerebral inhibition in human infants.

Method: A randomized placebo-controlled clinical trial of dietary phosphatidylcholine supplementation was conducted with 100 healthy pregnant women, starting in the second trimester. Supplementation to twice normal dietary levels for mother or newborn continued through the third postnatal month. All women received dietary advice regardless of treatment. Infants' electrophysiological recordings of inhibition of the P50 component of the cerebral evoked response to paired sounds were analyzed. The criterion for inhibition was suppression of the amplitude of the second P50 response by at least half, compared with the first response.

Results: No adverse effects of choline were observed in maternal health and delivery, birth, or infant development. At the fifth postnatal week, the P50 response was suppressed in more choline-treated infants (76%) compared with placebotreated infants (43%) (effect size=0.7). There was no difference at the 13th week. A *CHRNA7* genotype associated with schizophrenia was correlated with diminished P50 inhibition in the placebo-treated infants, but not in the choline-treated infants.

Conclusions: Neonatal developmental delay in inhibition is associated with attentional problems as the child matures. Perinatal choline activates timely development of cerebral inhibition, even in the presence of gene mutations that otherwise delay it.

Available online at www.sciencedirect.com

Schizophrenia Research 67 (2004) 237-245

SCHIZOPHRENIA RESEARCH

www.elsevier.com/locate/schres

Vitamin D supplementation during the first year of life and risk of schizophrenia: a Finnish birth cohort study

John McGrath^{a,b,*}, Kaisa Saari^{c,d}, Helinä Hakko^{c,d}, Jari Jokelainen^{c,e,f}, Peter Jones^g, Marjo-Riitta Järvelin^{e,h}, David Chant^a, Matti Isohanni^c

Table 2 Male cohort members only (n=4616)

	Time at risk (years)		Incidence per RR (95% CI) 100000 years at risk		100000 years		Adjusted RR (95% CI)*
Schizophrenia							
Frequency of vitamin D							
supplements							
None	1	411	243	1 (reference)	1 (reference)		
Irregularly	4	17,034	23	0.10 (0.01-0.82)	0.08 (0.01-0.95)		
Regularly	46	123,686	38	0.15 (0.02-1.02)	0.12 (0.02-0.90)		
Dose of vitamin D							
Less than 2000 IU/day	2	1474	136	1 (reference)	1 (reference)		
At least 2000 IU/day	49	139,657	35	0.26 (0.06-1.02)	0.23 (0.06-0.95)		

ORIGINAL ARTICLE Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia

S Giovanoli^{1,2,7}, H Engler^{3,7}, A Engler³, J Richetto^{4,5,6}, J Feldon², MA Riva^{4,5}, M Schedlowski³ and U Meyer^{1,2,6}

Maternal immune activation can increase the vulnerability of the offspring to develop neuroimmune and behavioral abnormalities in response to stress in puberty. In offspring of immune-challenged mothers, stress-induced inflammatory processes precede the adult onset of multiple behavioral dysfunctions. Here, we explored whether an early anti-inflammatory intervention during peripubertal stress exposure might prevent the subsequent emergence of adult behavioral pathology. We used an environmental two-hit model in mice, in which prenatal maternal administration of the viral mimetic poly(I:C) served as the first hit, and exposure to sub-chronic unpredictable stress during peripubertal maturation as the second hit. Using this model, we examined the effectiveness of the tetracycline antibiotic minocycline (MINO) given during stress exposure to block stress-induced inflammatory responses and to prevent subsequent behavioral abnormalities. We found that combined exposure to prenatal immune activation and peripubertal stress caused significant deficits in prepulse inhibition and increased sensitivity to the psychotomimetic drugs amphetamine and dizocilpine in adulthood. MINO treatment during stress exposure prevented the emergence of these behavioral dysfunctions. In addition, the pharmacological intervention blocked hippocampal and prefrontal microglia activation and interleukin-1β expression in offspring exposed to prenatal infection and peripubertal stress. Together, these findings demonstrate that presymptomatic MINO treatment can prevent the subsequent emergence of multiple behavioral abnormalities relevant to human neuropsychiatric disorders with onset in early adulthood, including schizophrenia. Our epidemiologically informed two-hit model may thus encourage attempts to explore the use of anti-inflammatory agents in the early course of brain disorders that are

characterized by signs of central nervous system inflammation during development.

Translational Psychiatry (2016) 6, e772; doi:10.1038/tp.2016.38; published online 5 April 2016

Arango et al, Schiz Bull 2015

we now have

evidence of certain things we knew in the past:

-premorbid adjustment is one of the best predictors of prognosis,

-the more subtle and insidious the onset the worse the prognosis

-schizophrenia is a síndrome with very heterogeneous course and outcome after a first psychotic episode

-lack of adherence to antipsychotic medication is the best predictor of relapse after a first psychotic episode.

However, we now know, and did not know then, that

-duration of untreated psychosis is very important for predicting long-term outcome

IQ is one of the best resilience factors

most of the (limited) progressive brain changes revealed by imaging studies take place within 2–5 years after the first psychotic episode (with potential implications for this therapeutic window -the observed progressive changes may be different at the level of brain developmental trajectories that result in a very similar final brain structure.

-investing in early intervention programs using assertive and integrated treatments is not only beneficial for patients, but also cost-effective. It has been calculated that for each dollar invested in early intervention in psychosis, the economic pay-off is almost 18 dollars.1

-More importantly, we also know that intervening at the time of the first episode may already be too late.

-Five decades of research have also not been able to come up with biomarkers for prognosis and, in fact, the best predictors are still clinical and premorbid markers of development.

Research advances and opportunities for intervention

- Prevalence, age of onset of psychosis, cost of psychosis
- FEP structure and evolution.
- Prognosis based on: DUP, cognition, negative sxs,
- Neurodevelopment
- Neuroimaging
- Inflammation

Delays on implementing treatments for earlyonset psychiatric disorders

Epidemiology and Psychiatric Sciences (2012), 21, 47–57. © Cambridge University Press 2011 doi:10.1017/S2045796011000746

SPECIAL ARTICLE

Age of onset of mental disorders and use of mental health services: needs, opportunities and obstacles

G. de Girolamo^{1*}, J. Dagani¹, R. Purcell², A. Cocchi³ and P. D. McGorry²

¹ IRCCS Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy

² Department of Psychiatry, Orygen Youth Health Research Centre, Centre for Youth Mental Health, University of Melbourne, Australia

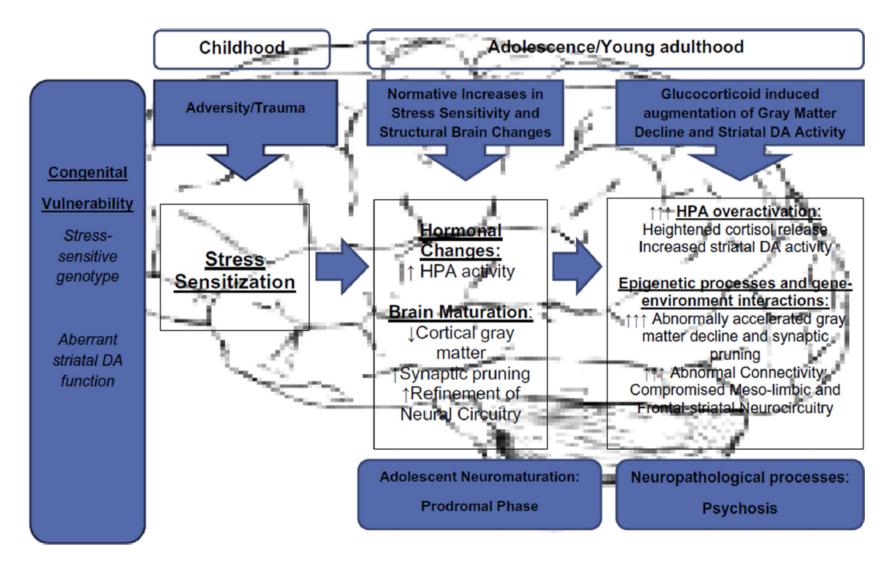
³ A.O. Ospedale Niguarda Ca' Granda, Programma 2000, Via Livigno, 3, 20128 Milan, Italy

Purpose of review. In this review, we provide an update of recent studies on the age of onset (AOO) of the major mental disorders, with a special focus on the availability and use of services providing prevention and early intervention.

Recent findings. The studies reviewed here confirm previous reports on the AOO of the major mental disorders. Although the behaviour disorders and specific anxiety disorders emerge during childhood, most of the high-prevalence disorders (mood, anxiety and substance use) emerge during adolescence and early adulthood, as do the psychotic disorders. Early AOO has been shown to be associated with a longer duration of untreated illness, and poorer clinical and functional outcomes.

Summary. Although the onset of most mental disorders usually occurs during the first three decades of life, effective treatment is typically not initiated until a number of years later. There is increasing evidence that intervention during the early stages of disorder may help reduce the severity and/or the persistence of the initial or primary disorder, and prevent secondary disorders. However, additional research is needed on effective interventions in early-stage cases, as well as on the long-term effects of early intervention, and for an appropriate service design for those with emerging mental disorders. This will mean not only the strengthening and re-engineering of existing systems, but is also crucial the construction of new streams of care for young people in transition to adulthood.

Received 1 July 2011; Revised 4 October 2011; Accepted 28 October 2011

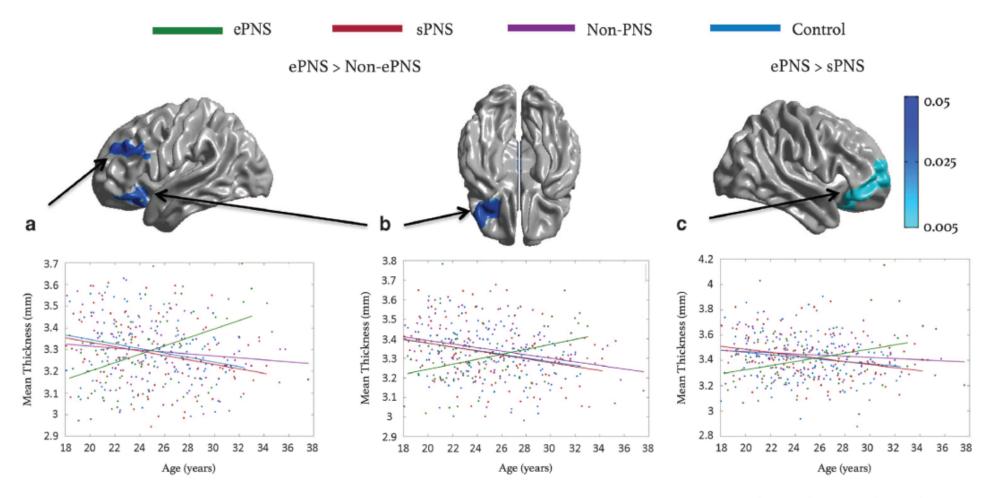

Key words: Age of onset (AOO), early intervention, prevention, DUP, treatment delay.

Initial challenge: diagnosis Potential psychotic disorders

- Schizophrenia
- Schizophreniform disorder
- Schizoaffective disorder
- Bipolar disorder
- Psychotic depression
- Brief psychotic disorder
- Psychotic disorder due to general medical condition
- Substance-induced
 psychotic disorder

- Post-psychotic depressive disorder of schizophrenia
- Shared psychotic disorder
- Culture-bound psychotic syndromes
- Atypical psychotic disorders

Childhood and adolescence as phases of major changes


Holtzman et al.

Neuroscience. 2013 September 26; 249: 172-191.

ARTICLE OPEN

Age-related cortical thickness trajectories in first episode psychosis patients presenting with early persistent negative symptoms

Carolina Makowski^{1,2,3}, Michael Bodnar^{2,4}, Ashok K Malla^{2,4}, Ridha Joober^{2,4} and Martin Lepage^{1,2,4}

npj Schizophrenia (2016) 16029

Early developmental signs in schizophrenia patients

Newborn- 3 months

Neuromotor and Minor Physical Anomalies

Speech/Language/ Hearing

Socioemotional Behavior

Cognition

Infancy 3-12 months

Sitting, walking, and standing delays

Toddler- Pre-schooler 1- 4 years

Potty training delays

Delays in speech and in receptive language, hearing impairments

Preference for solitary play; fewer joy, more negative affect ł

Elementary school 5-12 years

Poor coordination and clumsiness, unusual movements

Poor abnormal speech acquisition and quality; abnormal language including echolalia, meaningless laughter

More internalizing and externalizing disorders, psychotic symptoms at age 11-14

Poorer IQ scores, declines in IQ scores from 4 to 7 years, poorer performance in other cognitive tasks

Poorer IQ scores

Adapted from Liu et al. Schizophrenia Bulletin, 2015.